Step |
Hyp |
Ref |
Expression |
1 |
|
df-div |
|- / = ( x e. CC , y e. ( CC \ { 0 } ) |-> ( iota_ z e. CC ( y x. z ) = x ) ) |
2 |
|
riotaex |
|- ( iota_ z e. CC ( y x. z ) = x ) e. _V |
3 |
1 2
|
dmmpo |
|- dom / = ( CC X. ( CC \ { 0 } ) ) |
4 |
|
eqid |
|- 0 = 0 |
5 |
|
eldifsni |
|- ( 0 e. ( CC \ { 0 } ) -> 0 =/= 0 ) |
6 |
5
|
adantl |
|- ( ( 1 e. CC /\ 0 e. ( CC \ { 0 } ) ) -> 0 =/= 0 ) |
7 |
6
|
necon2bi |
|- ( 0 = 0 -> -. ( 1 e. CC /\ 0 e. ( CC \ { 0 } ) ) ) |
8 |
4 7
|
ax-mp |
|- -. ( 1 e. CC /\ 0 e. ( CC \ { 0 } ) ) |
9 |
|
ndmovg |
|- ( ( dom / = ( CC X. ( CC \ { 0 } ) ) /\ -. ( 1 e. CC /\ 0 e. ( CC \ { 0 } ) ) ) -> ( 1 / 0 ) = (/) ) |
10 |
3 8 9
|
mp2an |
|- ( 1 / 0 ) = (/) |