Description: Example theorem demonstrating decimal expansions. (Contributed by Thierry Arnoux, 27-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1mhdrd | ⊢ ( ( 0 . _ 9 9 ) + ( 0 . _ 0 1 ) ) = 1 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 2 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
| 3 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 4 | 2 | dec0h | ⊢ 9 = ; 0 9 | 
| 5 | 4 | eqcomi | ⊢ ; 0 9 = 9 | 
| 6 | 5 | deceq1i | ⊢ ; ; 0 9 9 = ; 9 9 | 
| 7 | 1 | dec0h | ⊢ 0 = ; 0 0 | 
| 8 | 7 | eqcomi | ⊢ ; 0 0 = 0 | 
| 9 | 8 | deceq1i | ⊢ ; ; 0 0 1 = ; 0 1 | 
| 10 | 9cn | ⊢ 9 ∈ ℂ | |
| 11 | 10 | addridi | ⊢ ( 9 + 0 ) = 9 | 
| 12 | 11 | oveq1i | ⊢ ( ( 9 + 0 ) + 1 ) = ( 9 + 1 ) | 
| 13 | 9p1e10 | ⊢ ( 9 + 1 ) = ; 1 0 | |
| 14 | 12 13 | eqtri | ⊢ ( ( 9 + 0 ) + 1 ) = ; 1 0 | 
| 15 | 2 2 1 3 6 9 14 1 13 | decaddc | ⊢ ( ; ; 0 9 9 + ; ; 0 0 1 ) = ; ; 1 0 0 | 
| 16 | 1 2 2 1 1 3 3 1 1 15 | dpadd3 | ⊢ ( ( 0 . _ 9 9 ) + ( 0 . _ 0 1 ) ) = ( 1 . _ 0 0 ) | 
| 17 | 1 | dp20u | ⊢ _ 0 0 = 0 | 
| 18 | 17 | oveq2i | ⊢ ( 1 . _ 0 0 ) = ( 1 . 0 ) | 
| 19 | 3 | dp0u | ⊢ ( 1 . 0 ) = 1 | 
| 20 | 16 18 19 | 3eqtri | ⊢ ( ( 0 . _ 9 9 ) + ( 0 . _ 0 1 ) ) = 1 |