Metamath Proof Explorer


Theorem dpadd3

Description: Addition with two decimals. (Contributed by Thierry Arnoux, 27-Dec-2021)

Ref Expression
Hypotheses dpmul.a 𝐴 ∈ ℕ0
dpmul.b 𝐵 ∈ ℕ0
dpmul.c 𝐶 ∈ ℕ0
dpmul.d 𝐷 ∈ ℕ0
dpmul.e 𝐸 ∈ ℕ0
dpmul.g 𝐺 ∈ ℕ0
dpadd3.f 𝐹 ∈ ℕ0
dpadd3.h 𝐻 ∈ ℕ0
dpadd3.i 𝐼 ∈ ℕ0
dpadd3.1 ( 𝐴 𝐵 𝐶 + 𝐷 𝐸 𝐹 ) = 𝐺 𝐻 𝐼
Assertion dpadd3 ( ( 𝐴 . 𝐵 𝐶 ) + ( 𝐷 . 𝐸 𝐹 ) ) = ( 𝐺 . 𝐻 𝐼 )

Proof

Step Hyp Ref Expression
1 dpmul.a 𝐴 ∈ ℕ0
2 dpmul.b 𝐵 ∈ ℕ0
3 dpmul.c 𝐶 ∈ ℕ0
4 dpmul.d 𝐷 ∈ ℕ0
5 dpmul.e 𝐸 ∈ ℕ0
6 dpmul.g 𝐺 ∈ ℕ0
7 dpadd3.f 𝐹 ∈ ℕ0
8 dpadd3.h 𝐻 ∈ ℕ0
9 dpadd3.i 𝐼 ∈ ℕ0
10 dpadd3.1 ( 𝐴 𝐵 𝐶 + 𝐷 𝐸 𝐹 ) = 𝐺 𝐻 𝐼
11 2 nn0rei 𝐵 ∈ ℝ
12 3 nn0rei 𝐶 ∈ ℝ
13 dp2cl ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 𝐶 ∈ ℝ )
14 11 12 13 mp2an 𝐵 𝐶 ∈ ℝ
15 dpcl ( ( 𝐴 ∈ ℕ0 𝐵 𝐶 ∈ ℝ ) → ( 𝐴 . 𝐵 𝐶 ) ∈ ℝ )
16 1 14 15 mp2an ( 𝐴 . 𝐵 𝐶 ) ∈ ℝ
17 16 recni ( 𝐴 . 𝐵 𝐶 ) ∈ ℂ
18 5 nn0rei 𝐸 ∈ ℝ
19 7 nn0rei 𝐹 ∈ ℝ
20 dp2cl ( ( 𝐸 ∈ ℝ ∧ 𝐹 ∈ ℝ ) → 𝐸 𝐹 ∈ ℝ )
21 18 19 20 mp2an 𝐸 𝐹 ∈ ℝ
22 dpcl ( ( 𝐷 ∈ ℕ0 𝐸 𝐹 ∈ ℝ ) → ( 𝐷 . 𝐸 𝐹 ) ∈ ℝ )
23 4 21 22 mp2an ( 𝐷 . 𝐸 𝐹 ) ∈ ℝ
24 23 recni ( 𝐷 . 𝐸 𝐹 ) ∈ ℂ
25 17 24 addcli ( ( 𝐴 . 𝐵 𝐶 ) + ( 𝐷 . 𝐸 𝐹 ) ) ∈ ℂ
26 8 nn0rei 𝐻 ∈ ℝ
27 9 nn0rei 𝐼 ∈ ℝ
28 dp2cl ( ( 𝐻 ∈ ℝ ∧ 𝐼 ∈ ℝ ) → 𝐻 𝐼 ∈ ℝ )
29 26 27 28 mp2an 𝐻 𝐼 ∈ ℝ
30 dpcl ( ( 𝐺 ∈ ℕ0 𝐻 𝐼 ∈ ℝ ) → ( 𝐺 . 𝐻 𝐼 ) ∈ ℝ )
31 6 29 30 mp2an ( 𝐺 . 𝐻 𝐼 ) ∈ ℝ
32 31 recni ( 𝐺 . 𝐻 𝐼 ) ∈ ℂ
33 10nn 1 0 ∈ ℕ
34 33 decnncl2 1 0 0 ∈ ℕ
35 34 nncni 1 0 0 ∈ ℂ
36 34 nnne0i 1 0 0 ≠ 0
37 35 36 pm3.2i ( 1 0 0 ∈ ℂ ∧ 1 0 0 ≠ 0 )
38 25 32 37 3pm3.2i ( ( ( 𝐴 . 𝐵 𝐶 ) + ( 𝐷 . 𝐸 𝐹 ) ) ∈ ℂ ∧ ( 𝐺 . 𝐻 𝐼 ) ∈ ℂ ∧ ( 1 0 0 ∈ ℂ ∧ 1 0 0 ≠ 0 ) )
39 17 24 35 adddiri ( ( ( 𝐴 . 𝐵 𝐶 ) + ( 𝐷 . 𝐸 𝐹 ) ) · 1 0 0 ) = ( ( ( 𝐴 . 𝐵 𝐶 ) · 1 0 0 ) + ( ( 𝐷 . 𝐸 𝐹 ) · 1 0 0 ) )
40 1 2 12 dpmul100 ( ( 𝐴 . 𝐵 𝐶 ) · 1 0 0 ) = 𝐴 𝐵 𝐶
41 4 5 19 dpmul100 ( ( 𝐷 . 𝐸 𝐹 ) · 1 0 0 ) = 𝐷 𝐸 𝐹
42 40 41 oveq12i ( ( ( 𝐴 . 𝐵 𝐶 ) · 1 0 0 ) + ( ( 𝐷 . 𝐸 𝐹 ) · 1 0 0 ) ) = ( 𝐴 𝐵 𝐶 + 𝐷 𝐸 𝐹 )
43 6 8 27 dpmul100 ( ( 𝐺 . 𝐻 𝐼 ) · 1 0 0 ) = 𝐺 𝐻 𝐼
44 10 42 43 3eqtr4i ( ( ( 𝐴 . 𝐵 𝐶 ) · 1 0 0 ) + ( ( 𝐷 . 𝐸 𝐹 ) · 1 0 0 ) ) = ( ( 𝐺 . 𝐻 𝐼 ) · 1 0 0 )
45 39 44 eqtri ( ( ( 𝐴 . 𝐵 𝐶 ) + ( 𝐷 . 𝐸 𝐹 ) ) · 1 0 0 ) = ( ( 𝐺 . 𝐻 𝐼 ) · 1 0 0 )
46 mulcan2 ( ( ( ( 𝐴 . 𝐵 𝐶 ) + ( 𝐷 . 𝐸 𝐹 ) ) ∈ ℂ ∧ ( 𝐺 . 𝐻 𝐼 ) ∈ ℂ ∧ ( 1 0 0 ∈ ℂ ∧ 1 0 0 ≠ 0 ) ) → ( ( ( ( 𝐴 . 𝐵 𝐶 ) + ( 𝐷 . 𝐸 𝐹 ) ) · 1 0 0 ) = ( ( 𝐺 . 𝐻 𝐼 ) · 1 0 0 ) ↔ ( ( 𝐴 . 𝐵 𝐶 ) + ( 𝐷 . 𝐸 𝐹 ) ) = ( 𝐺 . 𝐻 𝐼 ) ) )
47 46 biimpa ( ( ( ( ( 𝐴 . 𝐵 𝐶 ) + ( 𝐷 . 𝐸 𝐹 ) ) ∈ ℂ ∧ ( 𝐺 . 𝐻 𝐼 ) ∈ ℂ ∧ ( 1 0 0 ∈ ℂ ∧ 1 0 0 ≠ 0 ) ) ∧ ( ( ( 𝐴 . 𝐵 𝐶 ) + ( 𝐷 . 𝐸 𝐹 ) ) · 1 0 0 ) = ( ( 𝐺 . 𝐻 𝐼 ) · 1 0 0 ) ) → ( ( 𝐴 . 𝐵 𝐶 ) + ( 𝐷 . 𝐸 𝐹 ) ) = ( 𝐺 . 𝐻 𝐼 ) )
48 38 45 47 mp2an ( ( 𝐴 . 𝐵 𝐶 ) + ( 𝐷 . 𝐸 𝐹 ) ) = ( 𝐺 . 𝐻 𝐼 )