| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1pthon2v.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | 1pthon2v.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | id | ⊢ ( { 𝐴 ,  𝐵 }  ∈  𝐸  →  { 𝐴 ,  𝐵 }  ∈  𝐸 ) | 
						
							| 4 |  | sseq2 | ⊢ ( 𝑒  =  { 𝐴 ,  𝐵 }  →  ( { 𝐴 ,  𝐵 }  ⊆  𝑒  ↔  { 𝐴 ,  𝐵 }  ⊆  { 𝐴 ,  𝐵 } ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  𝑒  =  { 𝐴 ,  𝐵 } )  →  ( { 𝐴 ,  𝐵 }  ⊆  𝑒  ↔  { 𝐴 ,  𝐵 }  ⊆  { 𝐴 ,  𝐵 } ) ) | 
						
							| 6 |  | ssidd | ⊢ ( { 𝐴 ,  𝐵 }  ∈  𝐸  →  { 𝐴 ,  𝐵 }  ⊆  { 𝐴 ,  𝐵 } ) | 
						
							| 7 | 3 5 6 | rspcedvd | ⊢ ( { 𝐴 ,  𝐵 }  ∈  𝐸  →  ∃ 𝑒  ∈  𝐸 { 𝐴 ,  𝐵 }  ⊆  𝑒 ) | 
						
							| 8 | 1 2 | 1pthon2v | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ∃ 𝑒  ∈  𝐸 { 𝐴 ,  𝐵 }  ⊆  𝑒 )  →  ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) | 
						
							| 9 | 7 8 | syl3an3 | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) |