Metamath Proof Explorer


Theorem 235t711

Description: Calculate a product by long multiplication as a base comparison with other multiplication algorithms.

Conveniently, 7 1 1 has two ones which greatly simplifies calculations like 2 3 5 x. 1 . There isn't a higher level mulcomli saving the lower level uses of mulcomli within 2 3 5 x. 7 since mulcom2 doesn't exist, but if commuted versions of theorems like 7t2e14 are added then this proof would benefit more than ex-decpmul .

For practicality, this proof doesn't have "e167085" at the end of its name like 2p2e4 or 8t7e56 . (Contributed by Steven Nguyen, 10-Dec-2022) (New usage is discouraged.)

Ref Expression
Assertion 235t711 ( 2 3 5 · 7 1 1 ) = 1 6 7 0 8 5

Proof

Step Hyp Ref Expression
1 2nn0 2 ∈ ℕ0
2 3nn0 3 ∈ ℕ0
3 1 2 deccl 2 3 ∈ ℕ0
4 5nn0 5 ∈ ℕ0
5 3 4 deccl 2 3 5 ∈ ℕ0
6 7nn0 7 ∈ ℕ0
7 1nn0 1 ∈ ℕ0
8 6 7 deccl 7 1 ∈ ℕ0
9 eqid 7 1 1 = 7 1 1
10 eqid 7 1 = 7 1
11 eqid 2 3 = 2 3
12 8nn0 8 ∈ ℕ0
13 eqid 2 3 5 = 2 3 5
14 3 nn0cni 2 3 ∈ ℂ
15 2cn 2 ∈ ℂ
16 3p2e5 ( 3 + 2 ) = 5
17 1 2 1 11 16 decaddi ( 2 3 + 2 ) = 2 5
18 14 15 17 addcomli ( 2 + 2 3 ) = 2 5
19 0nn0 0 ∈ ℕ0
20 4nn0 4 ∈ ℕ0
21 6nn0 6 ∈ ℕ0
22 7 21 deccl 1 6 ∈ ℕ0
23 1 20 nn0addcli ( 2 + 4 ) ∈ ℕ0
24 7cn 7 ∈ ℂ
25 7t2e14 ( 7 · 2 ) = 1 4
26 24 15 25 mulcomli ( 2 · 7 ) = 1 4
27 4p2e6 ( 4 + 2 ) = 6
28 7 20 1 26 27 decaddi ( ( 2 · 7 ) + 2 ) = 1 6
29 3cn 3 ∈ ℂ
30 7t3e21 ( 7 · 3 ) = 2 1
31 24 29 30 mulcomli ( 3 · 7 ) = 2 1
32 6 1 2 11 7 1 28 31 decmul1c ( 2 3 · 7 ) = 1 6 1
33 4cn 4 ∈ ℂ
34 15 33 addcli ( 2 + 4 ) ∈ ℂ
35 ax-1cn 1 ∈ ℂ
36 33 15 27 addcomli ( 2 + 4 ) = 6
37 36 oveq1i ( ( 2 + 4 ) + 1 ) = ( 6 + 1 )
38 6p1e7 ( 6 + 1 ) = 7
39 37 38 eqtri ( ( 2 + 4 ) + 1 ) = 7
40 34 35 39 addcomli ( 1 + ( 2 + 4 ) ) = 7
41 22 7 23 32 40 decaddi ( ( 2 3 · 7 ) + ( 2 + 4 ) ) = 1 6 7
42 5cn 5 ∈ ℂ
43 7t5e35 ( 7 · 5 ) = 3 5
44 24 42 43 mulcomli ( 5 · 7 ) = 3 5
45 3p1e4 ( 3 + 1 ) = 4
46 5p5e10 ( 5 + 5 ) = 1 0
47 2 4 4 44 45 46 decaddci2 ( ( 5 · 7 ) + 5 ) = 4 0
48 3 4 1 4 13 18 6 19 20 41 47 decmac ( ( 2 3 5 · 7 ) + ( 2 + 2 3 ) ) = 1 6 7 0
49 5 nn0cni 2 3 5 ∈ ℂ
50 49 mulid1i ( 2 3 5 · 1 ) = 2 3 5
51 5p3e8 ( 5 + 3 ) = 8
52 3 4 2 50 51 decaddi ( ( 2 3 5 · 1 ) + 3 ) = 2 3 8
53 6 7 1 2 10 11 5 12 3 48 52 decma2c ( ( 2 3 5 · 7 1 ) + 2 3 ) = 1 6 7 0 8
54 5 8 7 9 4 3 53 50 decmul2c ( 2 3 5 · 7 1 1 ) = 1 6 7 0 8 5