Description: Calculate a product by long multiplication as a base comparison with other multiplication algorithms.
Conveniently, 7 1 1 has two ones which greatly simplifies calculations like 2 3 5 x. 1 . There isn't a higher level mulcomli saving the lower level uses of mulcomli within 2 3 5 x. 7 since mulcom2 doesn't exist, but if commuted versions of theorems like 7t2e14 are added then this proof would benefit more than ex-decpmul .
For practicality, this proof doesn't have "e167085" at the end of its name like 2p2e4 or 8t7e56 . (Contributed by Steven Nguyen, 10-Dec-2022) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 235t711 | ⊢ ( ; ; 2 3 5 · ; ; 7 1 1 ) = ; ; ; ; ; 1 6 7 0 8 5 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 2 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 3 | 1 2 | deccl | ⊢ ; 2 3 ∈ ℕ0 |
| 4 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
| 5 | 3 4 | deccl | ⊢ ; ; 2 3 5 ∈ ℕ0 |
| 6 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
| 7 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 8 | 6 7 | deccl | ⊢ ; 7 1 ∈ ℕ0 |
| 9 | eqid | ⊢ ; ; 7 1 1 = ; ; 7 1 1 | |
| 10 | eqid | ⊢ ; 7 1 = ; 7 1 | |
| 11 | eqid | ⊢ ; 2 3 = ; 2 3 | |
| 12 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
| 13 | eqid | ⊢ ; ; 2 3 5 = ; ; 2 3 5 | |
| 14 | 3 | nn0cni | ⊢ ; 2 3 ∈ ℂ |
| 15 | 2cn | ⊢ 2 ∈ ℂ | |
| 16 | 3p2e5 | ⊢ ( 3 + 2 ) = 5 | |
| 17 | 1 2 1 11 16 | decaddi | ⊢ ( ; 2 3 + 2 ) = ; 2 5 |
| 18 | 14 15 17 | addcomli | ⊢ ( 2 + ; 2 3 ) = ; 2 5 |
| 19 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 20 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 21 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
| 22 | 7 21 | deccl | ⊢ ; 1 6 ∈ ℕ0 |
| 23 | 1 20 | nn0addcli | ⊢ ( 2 + 4 ) ∈ ℕ0 |
| 24 | 7cn | ⊢ 7 ∈ ℂ | |
| 25 | 7t2e14 | ⊢ ( 7 · 2 ) = ; 1 4 | |
| 26 | 24 15 25 | mulcomli | ⊢ ( 2 · 7 ) = ; 1 4 |
| 27 | 4p2e6 | ⊢ ( 4 + 2 ) = 6 | |
| 28 | 7 20 1 26 27 | decaddi | ⊢ ( ( 2 · 7 ) + 2 ) = ; 1 6 |
| 29 | 3cn | ⊢ 3 ∈ ℂ | |
| 30 | 7t3e21 | ⊢ ( 7 · 3 ) = ; 2 1 | |
| 31 | 24 29 30 | mulcomli | ⊢ ( 3 · 7 ) = ; 2 1 |
| 32 | 6 1 2 11 7 1 28 31 | decmul1c | ⊢ ( ; 2 3 · 7 ) = ; ; 1 6 1 |
| 33 | 4cn | ⊢ 4 ∈ ℂ | |
| 34 | 15 33 | addcli | ⊢ ( 2 + 4 ) ∈ ℂ |
| 35 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 36 | 33 15 27 | addcomli | ⊢ ( 2 + 4 ) = 6 |
| 37 | 36 | oveq1i | ⊢ ( ( 2 + 4 ) + 1 ) = ( 6 + 1 ) |
| 38 | 6p1e7 | ⊢ ( 6 + 1 ) = 7 | |
| 39 | 37 38 | eqtri | ⊢ ( ( 2 + 4 ) + 1 ) = 7 |
| 40 | 34 35 39 | addcomli | ⊢ ( 1 + ( 2 + 4 ) ) = 7 |
| 41 | 22 7 23 32 40 | decaddi | ⊢ ( ( ; 2 3 · 7 ) + ( 2 + 4 ) ) = ; ; 1 6 7 |
| 42 | 5cn | ⊢ 5 ∈ ℂ | |
| 43 | 7t5e35 | ⊢ ( 7 · 5 ) = ; 3 5 | |
| 44 | 24 42 43 | mulcomli | ⊢ ( 5 · 7 ) = ; 3 5 |
| 45 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
| 46 | 5p5e10 | ⊢ ( 5 + 5 ) = ; 1 0 | |
| 47 | 2 4 4 44 45 46 | decaddci2 | ⊢ ( ( 5 · 7 ) + 5 ) = ; 4 0 |
| 48 | 3 4 1 4 13 18 6 19 20 41 47 | decmac | ⊢ ( ( ; ; 2 3 5 · 7 ) + ( 2 + ; 2 3 ) ) = ; ; ; 1 6 7 0 |
| 49 | 5 | nn0cni | ⊢ ; ; 2 3 5 ∈ ℂ |
| 50 | 49 | mulridi | ⊢ ( ; ; 2 3 5 · 1 ) = ; ; 2 3 5 |
| 51 | 5p3e8 | ⊢ ( 5 + 3 ) = 8 | |
| 52 | 3 4 2 50 51 | decaddi | ⊢ ( ( ; ; 2 3 5 · 1 ) + 3 ) = ; ; 2 3 8 |
| 53 | 6 7 1 2 10 11 5 12 3 48 52 | decma2c | ⊢ ( ( ; ; 2 3 5 · ; 7 1 ) + ; 2 3 ) = ; ; ; ; 1 6 7 0 8 |
| 54 | 5 8 7 9 4 3 53 50 | decmul2c | ⊢ ( ; ; 2 3 5 · ; ; 7 1 1 ) = ; ; ; ; ; 1 6 7 0 8 5 |