Description: Theorem *11.33 in WhiteheadRussell p. 162. Theorem 19.15 of Margaris p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2albi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ 𝜓 ) → ( ∀ 𝑥 ∀ 𝑦 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albi | ⊢ ( ∀ 𝑦 ( 𝜑 ↔ 𝜓 ) → ( ∀ 𝑦 𝜑 ↔ ∀ 𝑦 𝜓 ) ) | |
| 2 | 1 | alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ 𝜓 ) → ∀ 𝑥 ( ∀ 𝑦 𝜑 ↔ ∀ 𝑦 𝜓 ) ) |
| 3 | albi | ⊢ ( ∀ 𝑥 ( ∀ 𝑦 𝜑 ↔ ∀ 𝑦 𝜓 ) → ( ∀ 𝑥 ∀ 𝑦 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 𝜓 ) ) | |
| 4 | 2 3 | syl | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ 𝜓 ) → ( ∀ 𝑥 ∀ 𝑦 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 𝜓 ) ) |