Metamath Proof Explorer


Theorem 2albi

Description: Theorem *11.33 in WhiteheadRussell p. 162. Theorem 19.15 of Margaris p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion 2albi ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) → ( ∀ 𝑥𝑦 𝜑 ↔ ∀ 𝑥𝑦 𝜓 ) )

Proof

Step Hyp Ref Expression
1 albi ( ∀ 𝑦 ( 𝜑𝜓 ) → ( ∀ 𝑦 𝜑 ↔ ∀ 𝑦 𝜓 ) )
2 1 alimi ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) → ∀ 𝑥 ( ∀ 𝑦 𝜑 ↔ ∀ 𝑦 𝜓 ) )
3 albi ( ∀ 𝑥 ( ∀ 𝑦 𝜑 ↔ ∀ 𝑦 𝜓 ) → ( ∀ 𝑥𝑦 𝜑 ↔ ∀ 𝑥𝑦 𝜓 ) )
4 2 3 syl ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) → ( ∀ 𝑥𝑦 𝜑 ↔ ∀ 𝑥𝑦 𝜓 ) )