Description: Theorem *11.341 in WhiteheadRussell p. 162. Theorem 19.18 of Margaris p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2exbi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ 𝜓 ) → ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbi | ⊢ ( ∀ 𝑦 ( 𝜑 ↔ 𝜓 ) → ( ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜓 ) ) | |
| 2 | 1 | alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ 𝜓 ) → ∀ 𝑥 ( ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜓 ) ) |
| 3 | exbi | ⊢ ( ∀ 𝑥 ( ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜓 ) → ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜓 ) ) | |
| 4 | 2 3 | syl | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ 𝜓 ) → ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜓 ) ) |