Metamath Proof Explorer


Theorem 2exbi

Description: Theorem *11.341 in WhiteheadRussell p. 162. Theorem 19.18 of Margaris p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion 2exbi ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) → ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑥𝑦 𝜓 ) )

Proof

Step Hyp Ref Expression
1 exbi ( ∀ 𝑦 ( 𝜑𝜓 ) → ( ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜓 ) )
2 1 alimi ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) → ∀ 𝑥 ( ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜓 ) )
3 exbi ( ∀ 𝑥 ( ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜓 ) → ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑥𝑦 𝜓 ) )
4 2 3 syl ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) → ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑥𝑦 𝜓 ) )