Description: Theorem *11.36 in WhiteheadRussell p. 162. (Contributed by Andrew Salmon, 24-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spsbce-2 | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑥 ∃ 𝑦 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbe | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑥 [ 𝑤 / 𝑦 ] 𝜑 ) | |
| 2 | spsbe | ⊢ ( [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑦 𝜑 ) | |
| 3 | 2 | eximi | ⊢ ( ∃ 𝑥 [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑥 ∃ 𝑦 𝜑 ) |
| 4 | 1 3 | syl | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑥 ∃ 𝑦 𝜑 ) |