Metamath Proof Explorer


Theorem spsbce-2

Description: Theorem *11.36 in WhiteheadRussell p. 162. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion spsbce-2 ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑥𝑦 𝜑 )

Proof

Step Hyp Ref Expression
1 spsbe ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑥 [ 𝑤 / 𝑦 ] 𝜑 )
2 spsbe ( [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑦 𝜑 )
3 2 eximi ( ∃ 𝑥 [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑥𝑦 𝜑 )
4 1 3 syl ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑥𝑦 𝜑 )