Description: Theorem *11.36 in WhiteheadRussell p. 162. (Contributed by Andrew Salmon, 24-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | spsbce-2 | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑥 ∃ 𝑦 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbe | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑥 [ 𝑤 / 𝑦 ] 𝜑 ) | |
2 | spsbe | ⊢ ( [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑦 𝜑 ) | |
3 | 2 | eximi | ⊢ ( ∃ 𝑥 [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑥 ∃ 𝑦 𝜑 ) |
4 | 1 3 | syl | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑥 ∃ 𝑦 𝜑 ) |