Metamath Proof Explorer


Theorem spsbce-2

Description: Theorem *11.36 in WhiteheadRussell p. 162. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion spsbce-2
|- ( [ z / x ] [ w / y ] ph -> E. x E. y ph )

Proof

Step Hyp Ref Expression
1 spsbe
 |-  ( [ z / x ] [ w / y ] ph -> E. x [ w / y ] ph )
2 spsbe
 |-  ( [ w / y ] ph -> E. y ph )
3 2 eximi
 |-  ( E. x [ w / y ] ph -> E. x E. y ph )
4 1 3 syl
 |-  ( [ z / x ] [ w / y ] ph -> E. x E. y ph )