Description: Theorem *11.36 in WhiteheadRussell p. 162. (Contributed by Andrew Salmon, 24-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | spsbce-2 | |- ( [ z / x ] [ w / y ] ph -> E. x E. y ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbe | |- ( [ z / x ] [ w / y ] ph -> E. x [ w / y ] ph ) |
|
2 | spsbe | |- ( [ w / y ] ph -> E. y ph ) |
|
3 | 2 | eximi | |- ( E. x [ w / y ] ph -> E. x E. y ph ) |
4 | 1 3 | syl | |- ( [ z / x ] [ w / y ] ph -> E. x E. y ph ) |