Description: Theorem *11.36 in WhiteheadRussell p. 162. (Contributed by Andrew Salmon, 24-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spsbce-2 | |- ( [ z / x ] [ w / y ] ph -> E. x E. y ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbe | |- ( [ z / x ] [ w / y ] ph -> E. x [ w / y ] ph ) |
|
| 2 | spsbe | |- ( [ w / y ] ph -> E. y ph ) |
|
| 3 | 2 | eximi | |- ( E. x [ w / y ] ph -> E. x E. y ph ) |
| 4 | 1 3 | syl | |- ( [ z / x ] [ w / y ] ph -> E. x E. y ph ) |