Metamath Proof Explorer


Theorem 2oppcbas

Description: The double opposite category has the same objects as the original category. Intended for use with property lemmas such as monpropd . (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses oppcbas.1 𝑂 = ( oppCat ‘ 𝐶 )
2oppcco.2 𝐵 = ( Base ‘ 𝐶 )
Assertion 2oppcbas 𝐵 = ( Base ‘ ( oppCat ‘ 𝑂 ) )

Proof

Step Hyp Ref Expression
1 oppcbas.1 𝑂 = ( oppCat ‘ 𝐶 )
2 2oppcco.2 𝐵 = ( Base ‘ 𝐶 )
3 eqid ( oppCat ‘ 𝑂 ) = ( oppCat ‘ 𝑂 )
4 1 2 oppcbas 𝐵 = ( Base ‘ 𝑂 )
5 3 4 oppcbas 𝐵 = ( Base ‘ ( oppCat ‘ 𝑂 ) )