Metamath Proof Explorer


Theorem 2oppcbas

Description: The double opposite category has the same objects as the original category. Intended for use with property lemmas such as monpropd . (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses oppcbas.1 O=oppCatC
2oppcco.2 B=BaseC
Assertion 2oppcbas B=BaseoppCatO

Proof

Step Hyp Ref Expression
1 oppcbas.1 O=oppCatC
2 2oppcco.2 B=BaseC
3 eqid oppCatO=oppCatO
4 1 2 oppcbas B=BaseO
5 3 4 oppcbas B=BaseoppCatO