Metamath Proof Explorer


Theorem monpropd

Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same monomorphisms. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses monpropd.3 φHom𝑓C=Hom𝑓D
monpropd.4 φcomp𝑓C=comp𝑓D
monpropd.c φCCat
monpropd.d φDCat
Assertion monpropd φMonoC=MonoD

Proof

Step Hyp Ref Expression
1 monpropd.3 φHom𝑓C=Hom𝑓D
2 monpropd.4 φcomp𝑓C=comp𝑓D
3 monpropd.c φCCat
4 monpropd.d φDCat
5 eqid BaseC=BaseC
6 eqid HomC=HomC
7 eqid HomD=HomD
8 1 ad2antrr φaBaseCbBaseCHom𝑓C=Hom𝑓D
9 8 ad2antrr φaBaseCbBaseCfaHomCbcBaseCHom𝑓C=Hom𝑓D
10 simpr φaBaseCbBaseCfaHomCbcBaseCcBaseC
11 simp-4r φaBaseCbBaseCfaHomCbcBaseCaBaseC
12 5 6 7 9 10 11 homfeqval φaBaseCbBaseCfaHomCbcBaseCcHomCa=cHomDa
13 eqid compC=compC
14 eqid compD=compD
15 1 ad5antr φaBaseCbBaseCfaHomCbcBaseCgcHomCaHom𝑓C=Hom𝑓D
16 2 ad5antr φaBaseCbBaseCfaHomCbcBaseCgcHomCacomp𝑓C=comp𝑓D
17 simplr φaBaseCbBaseCfaHomCbcBaseCgcHomCacBaseC
18 simp-5r φaBaseCbBaseCfaHomCbcBaseCgcHomCaaBaseC
19 simp-4r φaBaseCbBaseCfaHomCbcBaseCgcHomCabBaseC
20 simpr φaBaseCbBaseCfaHomCbcBaseCgcHomCagcHomCa
21 simpllr φaBaseCbBaseCfaHomCbcBaseCgcHomCafaHomCb
22 5 6 13 14 15 16 17 18 19 20 21 comfeqval φaBaseCbBaseCfaHomCbcBaseCgcHomCafcacompCbg=fcacompDbg
23 12 22 mpteq12dva φaBaseCbBaseCfaHomCbcBaseCgcHomCafcacompCbg=gcHomDafcacompDbg
24 23 cnveqd φaBaseCbBaseCfaHomCbcBaseCgcHomCafcacompCbg-1=gcHomDafcacompDbg-1
25 24 funeqd φaBaseCbBaseCfaHomCbcBaseCFungcHomCafcacompCbg-1FungcHomDafcacompDbg-1
26 25 ralbidva φaBaseCbBaseCfaHomCbcBaseCFungcHomCafcacompCbg-1cBaseCFungcHomDafcacompDbg-1
27 26 rabbidva φaBaseCbBaseCfaHomCb|cBaseCFungcHomCafcacompCbg-1=faHomCb|cBaseCFungcHomDafcacompDbg-1
28 simplr φaBaseCbBaseCaBaseC
29 simpr φaBaseCbBaseCbBaseC
30 5 6 7 8 28 29 homfeqval φaBaseCbBaseCaHomCb=aHomDb
31 1 homfeqbas φBaseC=BaseD
32 31 ad2antrr φaBaseCbBaseCBaseC=BaseD
33 32 raleqdv φaBaseCbBaseCcBaseCFungcHomDafcacompDbg-1cBaseDFungcHomDafcacompDbg-1
34 30 33 rabeqbidv φaBaseCbBaseCfaHomCb|cBaseCFungcHomDafcacompDbg-1=faHomDb|cBaseDFungcHomDafcacompDbg-1
35 27 34 eqtrd φaBaseCbBaseCfaHomCb|cBaseCFungcHomCafcacompCbg-1=faHomDb|cBaseDFungcHomDafcacompDbg-1
36 35 3impa φaBaseCbBaseCfaHomCb|cBaseCFungcHomCafcacompCbg-1=faHomDb|cBaseDFungcHomDafcacompDbg-1
37 36 mpoeq3dva φaBaseC,bBaseCfaHomCb|cBaseCFungcHomCafcacompCbg-1=aBaseC,bBaseCfaHomDb|cBaseDFungcHomDafcacompDbg-1
38 mpoeq12 BaseC=BaseDBaseC=BaseDaBaseC,bBaseCfaHomDb|cBaseDFungcHomDafcacompDbg-1=aBaseD,bBaseDfaHomDb|cBaseDFungcHomDafcacompDbg-1
39 31 31 38 syl2anc φaBaseC,bBaseCfaHomDb|cBaseDFungcHomDafcacompDbg-1=aBaseD,bBaseDfaHomDb|cBaseDFungcHomDafcacompDbg-1
40 37 39 eqtrd φaBaseC,bBaseCfaHomCb|cBaseCFungcHomCafcacompCbg-1=aBaseD,bBaseDfaHomDb|cBaseDFungcHomDafcacompDbg-1
41 eqid MonoC=MonoC
42 5 6 13 41 3 monfval φMonoC=aBaseC,bBaseCfaHomCb|cBaseCFungcHomCafcacompCbg-1
43 eqid BaseD=BaseD
44 eqid MonoD=MonoD
45 43 7 14 44 4 monfval φMonoD=aBaseD,bBaseDfaHomDb|cBaseDFungcHomDafcacompDbg-1
46 40 42 45 3eqtr4d φMonoC=MonoD