Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same monomorphisms. (Contributed by Mario Carneiro, 3-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | monpropd.3 | |
|
monpropd.4 | |
||
monpropd.c | |
||
monpropd.d | |
||
Assertion | monpropd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | monpropd.3 | |
|
2 | monpropd.4 | |
|
3 | monpropd.c | |
|
4 | monpropd.d | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | 1 | ad2antrr | |
9 | 8 | ad2antrr | |
10 | simpr | |
|
11 | simp-4r | |
|
12 | 5 6 7 9 10 11 | homfeqval | |
13 | eqid | |
|
14 | eqid | |
|
15 | 1 | ad5antr | |
16 | 2 | ad5antr | |
17 | simplr | |
|
18 | simp-5r | |
|
19 | simp-4r | |
|
20 | simpr | |
|
21 | simpllr | |
|
22 | 5 6 13 14 15 16 17 18 19 20 21 | comfeqval | |
23 | 12 22 | mpteq12dva | |
24 | 23 | cnveqd | |
25 | 24 | funeqd | |
26 | 25 | ralbidva | |
27 | 26 | rabbidva | |
28 | simplr | |
|
29 | simpr | |
|
30 | 5 6 7 8 28 29 | homfeqval | |
31 | 1 | homfeqbas | |
32 | 31 | ad2antrr | |
33 | 32 | raleqdv | |
34 | 30 33 | rabeqbidv | |
35 | 27 34 | eqtrd | |
36 | 35 | 3impa | |
37 | 36 | mpoeq3dva | |
38 | mpoeq12 | |
|
39 | 31 31 38 | syl2anc | |
40 | 37 39 | eqtrd | |
41 | eqid | |
|
42 | 5 6 13 41 3 | monfval | |
43 | eqid | |
|
44 | eqid | |
|
45 | 43 7 14 44 4 | monfval | |
46 | 40 42 45 | 3eqtr4d | |