| Step |
Hyp |
Ref |
Expression |
| 1 |
|
monpropd.3 |
|
| 2 |
|
monpropd.4 |
|
| 3 |
|
monpropd.c |
|
| 4 |
|
monpropd.d |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
1
|
ad2antrr |
|
| 9 |
8
|
ad2antrr |
|
| 10 |
|
simpr |
|
| 11 |
|
simp-4r |
|
| 12 |
5 6 7 9 10 11
|
homfeqval |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
1
|
ad5antr |
|
| 16 |
2
|
ad5antr |
|
| 17 |
|
simplr |
|
| 18 |
|
simp-5r |
|
| 19 |
|
simp-4r |
|
| 20 |
|
simpr |
|
| 21 |
|
simpllr |
|
| 22 |
5 6 13 14 15 16 17 18 19 20 21
|
comfeqval |
|
| 23 |
12 22
|
mpteq12dva |
|
| 24 |
23
|
cnveqd |
|
| 25 |
24
|
funeqd |
|
| 26 |
25
|
ralbidva |
|
| 27 |
26
|
rabbidva |
|
| 28 |
|
simplr |
|
| 29 |
|
simpr |
|
| 30 |
5 6 7 8 28 29
|
homfeqval |
|
| 31 |
1
|
homfeqbas |
|
| 32 |
31
|
ad2antrr |
|
| 33 |
32
|
raleqdv |
|
| 34 |
30 33
|
rabeqbidv |
|
| 35 |
27 34
|
eqtrd |
|
| 36 |
35
|
3impa |
|
| 37 |
36
|
mpoeq3dva |
|
| 38 |
|
mpoeq12 |
|
| 39 |
31 31 38
|
syl2anc |
|
| 40 |
37 39
|
eqtrd |
|
| 41 |
|
eqid |
|
| 42 |
5 6 13 41 3
|
monfval |
|
| 43 |
|
eqid |
|
| 44 |
|
eqid |
|
| 45 |
43 7 14 44 4
|
monfval |
|
| 46 |
40 42 45
|
3eqtr4d |
|