Metamath Proof Explorer


Theorem oppcmon

Description: A monomorphism in the opposite category is an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses oppcmon.o O=oppCatC
oppcmon.c φCCat
oppcmon.m M=MonoO
oppcmon.e E=EpiC
Assertion oppcmon φXMY=YEX

Proof

Step Hyp Ref Expression
1 oppcmon.o O=oppCatC
2 oppcmon.c φCCat
3 oppcmon.m M=MonoO
4 oppcmon.e E=EpiC
5 fveq2 c=CoppCatc=oppCatC
6 5 1 eqtr4di c=CoppCatc=O
7 6 fveq2d c=CMonooppCatc=MonoO
8 7 3 eqtr4di c=CMonooppCatc=M
9 8 tposeqd c=CtposMonooppCatc=tposM
10 df-epi Epi=cCattposMonooppCatc
11 3 fvexi MV
12 11 tposex tposMV
13 9 10 12 fvmpt CCatEpiC=tposM
14 2 13 syl φEpiC=tposM
15 4 14 eqtrid φE=tposM
16 15 oveqd φYEX=YtposMX
17 ovtpos YtposMX=XMY
18 16 17 eqtr2di φXMY=YEX