Description: A monomorphism in the opposite category is an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oppcmon.o | |
|
oppcmon.c | |
||
oppcmon.m | |
||
oppcmon.e | |
||
Assertion | oppcmon | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcmon.o | |
|
2 | oppcmon.c | |
|
3 | oppcmon.m | |
|
4 | oppcmon.e | |
|
5 | fveq2 | |
|
6 | 5 1 | eqtr4di | |
7 | 6 | fveq2d | |
8 | 7 3 | eqtr4di | |
9 | 8 | tposeqd | |
10 | df-epi | |
|
11 | 3 | fvexi | |
12 | 11 | tposex | |
13 | 9 10 12 | fvmpt | |
14 | 2 13 | syl | |
15 | 4 14 | eqtrid | |
16 | 15 | oveqd | |
17 | ovtpos | |
|
18 | 16 17 | eqtr2di | |