| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2wlkd.p |
⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 |
| 2 |
|
2wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 |
| 3 |
|
2wlkd.s |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) |
| 4 |
|
2wlkd.n |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) |
| 5 |
|
2wlkd.e |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) |
| 6 |
1 2 3 4 5
|
2wlkdlem8 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ) ) |
| 7 |
|
fveq2 |
⊢ ( ( 𝐹 ‘ 0 ) = 𝐽 → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = ( 𝐼 ‘ 𝐽 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = ( 𝐼 ‘ 𝐽 ) ) |
| 9 |
8
|
sseq2d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ) → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ↔ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) ) |
| 10 |
|
fveq2 |
⊢ ( ( 𝐹 ‘ 1 ) = 𝐾 → ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = ( 𝐼 ‘ 𝐾 ) ) |
| 11 |
10
|
adantl |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ) → ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = ( 𝐼 ‘ 𝐾 ) ) |
| 12 |
11
|
sseq2d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ) → ( { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ↔ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) |
| 13 |
9 12
|
anbi12d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ) → ( ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ) ↔ ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) ) |
| 14 |
6 13
|
syl |
⊢ ( 𝜑 → ( ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ) ↔ ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) ) |
| 15 |
5 14
|
mpbird |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ) ) |