Metamath Proof Explorer


Theorem 2wlkdlem9

Description: Lemma 9 for 2wlkd . (Contributed by AV, 14-Feb-2021)

Ref Expression
Hypotheses 2wlkd.p
|- P = <" A B C ">
2wlkd.f
|- F = <" J K ">
2wlkd.s
|- ( ph -> ( A e. V /\ B e. V /\ C e. V ) )
2wlkd.n
|- ( ph -> ( A =/= B /\ B =/= C ) )
2wlkd.e
|- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) )
Assertion 2wlkdlem9
|- ( ph -> ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) ) )

Proof

Step Hyp Ref Expression
1 2wlkd.p
 |-  P = <" A B C ">
2 2wlkd.f
 |-  F = <" J K ">
3 2wlkd.s
 |-  ( ph -> ( A e. V /\ B e. V /\ C e. V ) )
4 2wlkd.n
 |-  ( ph -> ( A =/= B /\ B =/= C ) )
5 2wlkd.e
 |-  ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) )
6 1 2 3 4 5 2wlkdlem8
 |-  ( ph -> ( ( F ` 0 ) = J /\ ( F ` 1 ) = K ) )
7 fveq2
 |-  ( ( F ` 0 ) = J -> ( I ` ( F ` 0 ) ) = ( I ` J ) )
8 7 adantr
 |-  ( ( ( F ` 0 ) = J /\ ( F ` 1 ) = K ) -> ( I ` ( F ` 0 ) ) = ( I ` J ) )
9 8 sseq2d
 |-  ( ( ( F ` 0 ) = J /\ ( F ` 1 ) = K ) -> ( { A , B } C_ ( I ` ( F ` 0 ) ) <-> { A , B } C_ ( I ` J ) ) )
10 fveq2
 |-  ( ( F ` 1 ) = K -> ( I ` ( F ` 1 ) ) = ( I ` K ) )
11 10 adantl
 |-  ( ( ( F ` 0 ) = J /\ ( F ` 1 ) = K ) -> ( I ` ( F ` 1 ) ) = ( I ` K ) )
12 11 sseq2d
 |-  ( ( ( F ` 0 ) = J /\ ( F ` 1 ) = K ) -> ( { B , C } C_ ( I ` ( F ` 1 ) ) <-> { B , C } C_ ( I ` K ) ) )
13 9 12 anbi12d
 |-  ( ( ( F ` 0 ) = J /\ ( F ` 1 ) = K ) -> ( ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) ) <-> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) )
14 6 13 syl
 |-  ( ph -> ( ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) ) <-> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) )
15 5 14 mpbird
 |-  ( ph -> ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) ) )