Metamath Proof Explorer


Theorem 2wlkdlem8

Description: Lemma 8 for 2wlkd . (Contributed by AV, 14-Feb-2021)

Ref Expression
Hypotheses 2wlkd.p
|- P = <" A B C ">
2wlkd.f
|- F = <" J K ">
2wlkd.s
|- ( ph -> ( A e. V /\ B e. V /\ C e. V ) )
2wlkd.n
|- ( ph -> ( A =/= B /\ B =/= C ) )
2wlkd.e
|- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) )
Assertion 2wlkdlem8
|- ( ph -> ( ( F ` 0 ) = J /\ ( F ` 1 ) = K ) )

Proof

Step Hyp Ref Expression
1 2wlkd.p
 |-  P = <" A B C ">
2 2wlkd.f
 |-  F = <" J K ">
3 2wlkd.s
 |-  ( ph -> ( A e. V /\ B e. V /\ C e. V ) )
4 2wlkd.n
 |-  ( ph -> ( A =/= B /\ B =/= C ) )
5 2wlkd.e
 |-  ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) )
6 1 2 3 4 5 2wlkdlem7
 |-  ( ph -> ( J e. _V /\ K e. _V ) )
7 s2fv0
 |-  ( J e. _V -> ( <" J K "> ` 0 ) = J )
8 s2fv1
 |-  ( K e. _V -> ( <" J K "> ` 1 ) = K )
9 7 8 anim12i
 |-  ( ( J e. _V /\ K e. _V ) -> ( ( <" J K "> ` 0 ) = J /\ ( <" J K "> ` 1 ) = K ) )
10 6 9 syl
 |-  ( ph -> ( ( <" J K "> ` 0 ) = J /\ ( <" J K "> ` 1 ) = K ) )
11 2 fveq1i
 |-  ( F ` 0 ) = ( <" J K "> ` 0 )
12 11 eqeq1i
 |-  ( ( F ` 0 ) = J <-> ( <" J K "> ` 0 ) = J )
13 2 fveq1i
 |-  ( F ` 1 ) = ( <" J K "> ` 1 )
14 13 eqeq1i
 |-  ( ( F ` 1 ) = K <-> ( <" J K "> ` 1 ) = K )
15 12 14 anbi12i
 |-  ( ( ( F ` 0 ) = J /\ ( F ` 1 ) = K ) <-> ( ( <" J K "> ` 0 ) = J /\ ( <" J K "> ` 1 ) = K ) )
16 10 15 sylibr
 |-  ( ph -> ( ( F ` 0 ) = J /\ ( F ` 1 ) = K ) )