Metamath Proof Explorer


Theorem 2wlkdlem8

Description: Lemma 8 for 2wlkd . (Contributed by AV, 14-Feb-2021)

Ref Expression
Hypotheses 2wlkd.p P=⟨“ABC”⟩
2wlkd.f F=⟨“JK”⟩
2wlkd.s φAVBVCV
2wlkd.n φABBC
2wlkd.e φABIJBCIK
Assertion 2wlkdlem8 φF0=JF1=K

Proof

Step Hyp Ref Expression
1 2wlkd.p P=⟨“ABC”⟩
2 2wlkd.f F=⟨“JK”⟩
3 2wlkd.s φAVBVCV
4 2wlkd.n φABBC
5 2wlkd.e φABIJBCIK
6 1 2 3 4 5 2wlkdlem7 φJVKV
7 s2fv0 JV⟨“JK”⟩0=J
8 s2fv1 KV⟨“JK”⟩1=K
9 7 8 anim12i JVKV⟨“JK”⟩0=J⟨“JK”⟩1=K
10 6 9 syl φ⟨“JK”⟩0=J⟨“JK”⟩1=K
11 2 fveq1i F0=⟨“JK”⟩0
12 11 eqeq1i F0=J⟨“JK”⟩0=J
13 2 fveq1i F1=⟨“JK”⟩1
14 13 eqeq1i F1=K⟨“JK”⟩1=K
15 12 14 anbi12i F0=JF1=K⟨“JK”⟩0=J⟨“JK”⟩1=K
16 10 15 sylibr φF0=JF1=K