Metamath Proof Explorer


Theorem 3anrabdioph

Description: Diophantine set builder for ternary conjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Assertion 3anrabdioph ( ( { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜑 } ∈ ( Dioph ‘ 𝑁 ) ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜓 } ∈ ( Dioph ‘ 𝑁 ) ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜒 } ∈ ( Dioph ‘ 𝑁 ) ) → { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ ( 𝜑𝜓𝜒 ) } ∈ ( Dioph ‘ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 df-3an ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ 𝜒 ) )
2 1 rabbii { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ ( 𝜑𝜓𝜒 ) } = { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ ( ( 𝜑𝜓 ) ∧ 𝜒 ) }
3 anrabdioph ( ( { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜑 } ∈ ( Dioph ‘ 𝑁 ) ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜓 } ∈ ( Dioph ‘ 𝑁 ) ) → { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ ( 𝜑𝜓 ) } ∈ ( Dioph ‘ 𝑁 ) )
4 anrabdioph ( ( { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ ( 𝜑𝜓 ) } ∈ ( Dioph ‘ 𝑁 ) ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜒 } ∈ ( Dioph ‘ 𝑁 ) ) → { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ ( ( 𝜑𝜓 ) ∧ 𝜒 ) } ∈ ( Dioph ‘ 𝑁 ) )
5 3 4 sylan ( ( ( { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜑 } ∈ ( Dioph ‘ 𝑁 ) ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜓 } ∈ ( Dioph ‘ 𝑁 ) ) ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜒 } ∈ ( Dioph ‘ 𝑁 ) ) → { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ ( ( 𝜑𝜓 ) ∧ 𝜒 ) } ∈ ( Dioph ‘ 𝑁 ) )
6 2 5 eqeltrid ( ( ( { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜑 } ∈ ( Dioph ‘ 𝑁 ) ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜓 } ∈ ( Dioph ‘ 𝑁 ) ) ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜒 } ∈ ( Dioph ‘ 𝑁 ) ) → { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ ( 𝜑𝜓𝜒 ) } ∈ ( Dioph ‘ 𝑁 ) )
7 6 3impa ( ( { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜑 } ∈ ( Dioph ‘ 𝑁 ) ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜓 } ∈ ( Dioph ‘ 𝑁 ) ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜒 } ∈ ( Dioph ‘ 𝑁 ) ) → { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ ( 𝜑𝜓𝜒 ) } ∈ ( Dioph ‘ 𝑁 ) )