Metamath Proof Explorer


Theorem anrabdioph

Description: Diophantine set builder for conjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Assertion anrabdioph ( ( { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜑 } ∈ ( Dioph ‘ 𝑁 ) ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜓 } ∈ ( Dioph ‘ 𝑁 ) ) → { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ ( 𝜑𝜓 ) } ∈ ( Dioph ‘ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 inrab ( { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜑 } ∩ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜓 } ) = { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ ( 𝜑𝜓 ) }
2 diophin ( ( { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜑 } ∈ ( Dioph ‘ 𝑁 ) ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜓 } ∈ ( Dioph ‘ 𝑁 ) ) → ( { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜑 } ∩ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜓 } ) ∈ ( Dioph ‘ 𝑁 ) )
3 1 2 eqeltrrid ( ( { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜑 } ∈ ( Dioph ‘ 𝑁 ) ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜓 } ∈ ( Dioph ‘ 𝑁 ) ) → { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ ( 𝜑𝜓 ) } ∈ ( Dioph ‘ 𝑁 ) )