Step |
Hyp |
Ref |
Expression |
1 |
|
inrab |
⊢ ( { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝜑 } ∩ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝜓 } ) = { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ( 𝜑 ∧ 𝜓 ) } |
2 |
|
diophin |
⊢ ( ( { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝜑 } ∈ ( Dioph ‘ 𝑁 ) ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝜓 } ∈ ( Dioph ‘ 𝑁 ) ) → ( { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝜑 } ∩ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝜓 } ) ∈ ( Dioph ‘ 𝑁 ) ) |
3 |
1 2
|
eqeltrrid |
⊢ ( ( { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝜑 } ∈ ( Dioph ‘ 𝑁 ) ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝜓 } ∈ ( Dioph ‘ 𝑁 ) ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ( 𝜑 ∧ 𝜓 ) } ∈ ( Dioph ‘ 𝑁 ) ) |