Metamath Proof Explorer


Theorem anrabdioph

Description: Diophantine set builder for conjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Assertion anrabdioph t 0 1 N | φ Dioph N t 0 1 N | ψ Dioph N t 0 1 N | φ ψ Dioph N

Proof

Step Hyp Ref Expression
1 inrab t 0 1 N | φ t 0 1 N | ψ = t 0 1 N | φ ψ
2 diophin t 0 1 N | φ Dioph N t 0 1 N | ψ Dioph N t 0 1 N | φ t 0 1 N | ψ Dioph N
3 1 2 eqeltrrid t 0 1 N | φ Dioph N t 0 1 N | ψ Dioph N t 0 1 N | φ ψ Dioph N