Metamath Proof Explorer


Theorem orrabdioph

Description: Diophantine set builder for disjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Assertion orrabdioph t 0 1 N | φ Dioph N t 0 1 N | ψ Dioph N t 0 1 N | φ ψ Dioph N

Proof

Step Hyp Ref Expression
1 unrab t 0 1 N | φ t 0 1 N | ψ = t 0 1 N | φ ψ
2 diophun t 0 1 N | φ Dioph N t 0 1 N | ψ Dioph N t 0 1 N | φ t 0 1 N | ψ Dioph N
3 1 2 eqeltrrid t 0 1 N | φ Dioph N t 0 1 N | ψ Dioph N t 0 1 N | φ ψ Dioph N