| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldiophelnn0 |
|
| 2 |
|
nnex |
|
| 3 |
2
|
jctr |
|
| 4 |
|
1z |
|
| 5 |
|
nnuz |
|
| 6 |
5
|
uzinf |
|
| 7 |
4 6
|
ax-mp |
|
| 8 |
|
elfznn |
|
| 9 |
8
|
ssriv |
|
| 10 |
7 9
|
pm3.2i |
|
| 11 |
|
eldioph2b |
|
| 12 |
|
eldioph2b |
|
| 13 |
11 12
|
anbi12d |
|
| 14 |
3 10 13
|
sylancl |
|
| 15 |
|
reeanv |
|
| 16 |
|
unab |
|
| 17 |
|
r19.43 |
|
| 18 |
|
andi |
|
| 19 |
|
zex |
|
| 20 |
|
nn0ssz |
|
| 21 |
|
mapss |
|
| 22 |
19 20 21
|
mp2an |
|
| 23 |
22
|
sseli |
|
| 24 |
23
|
adantl |
|
| 25 |
|
fveq2 |
|
| 26 |
|
fveq2 |
|
| 27 |
25 26
|
oveq12d |
|
| 28 |
|
eqid |
|
| 29 |
|
ovex |
|
| 30 |
27 28 29
|
fvmpt |
|
| 31 |
24 30
|
syl |
|
| 32 |
31
|
eqeq1d |
|
| 33 |
|
simplrl |
|
| 34 |
|
mzpf |
|
| 35 |
33 34
|
syl |
|
| 36 |
35 24
|
ffvelcdmd |
|
| 37 |
36
|
zcnd |
|
| 38 |
|
simplrr |
|
| 39 |
|
mzpf |
|
| 40 |
38 39
|
syl |
|
| 41 |
40 24
|
ffvelcdmd |
|
| 42 |
41
|
zcnd |
|
| 43 |
37 42
|
mul0ord |
|
| 44 |
32 43
|
bitr2d |
|
| 45 |
44
|
anbi2d |
|
| 46 |
18 45
|
bitr3id |
|
| 47 |
46
|
rexbidva |
|
| 48 |
17 47
|
bitr3id |
|
| 49 |
48
|
abbidv |
|
| 50 |
16 49
|
eqtrid |
|
| 51 |
|
simpl |
|
| 52 |
2 9
|
pm3.2i |
|
| 53 |
52
|
a1i |
|
| 54 |
|
simprl |
|
| 55 |
54 34
|
syl |
|
| 56 |
55
|
feqmptd |
|
| 57 |
56 54
|
eqeltrrd |
|
| 58 |
|
simprr |
|
| 59 |
58 39
|
syl |
|
| 60 |
59
|
feqmptd |
|
| 61 |
60 58
|
eqeltrrd |
|
| 62 |
|
mzpmulmpt |
|
| 63 |
57 61 62
|
syl2anc |
|
| 64 |
|
eldioph2 |
|
| 65 |
51 53 63 64
|
syl3anc |
|
| 66 |
50 65
|
eqeltrd |
|
| 67 |
|
uneq12 |
|
| 68 |
67
|
eleq1d |
|
| 69 |
66 68
|
syl5ibrcom |
|
| 70 |
69
|
rexlimdvva |
|
| 71 |
15 70
|
biimtrrid |
|
| 72 |
14 71
|
sylbid |
|
| 73 |
1 72
|
syl |
|
| 74 |
73
|
anabsi5 |
|