Metamath Proof Explorer


Theorem eldioph2

Description: Construct a Diophantine set from a polynomial with witness variables drawn from any set whatsoever, via mzpcompact2 . (Contributed by Stefan O'Rear, 8-Oct-2014) (Revised by Stefan O'Rear, 5-Jun-2015)

Ref Expression
Assertion eldioph2 N 0 S V 1 N S P mzPoly S t | u 0 S t = u 1 N P u = 0 Dioph N

Proof

Step Hyp Ref Expression
1 mzpcompact2 P mzPoly S a Fin b mzPoly a a S P = e S b e a
2 1 3ad2ant3 N 0 S V 1 N S P mzPoly S a Fin b mzPoly a a S P = e S b e a
3 fveq1 P = e S b e a P u = e S b e a u
4 3 eqeq1d P = e S b e a P u = 0 e S b e a u = 0
5 4 anbi2d P = e S b e a t = u 1 N P u = 0 t = u 1 N e S b e a u = 0
6 5 rexbidv P = e S b e a u 0 S t = u 1 N P u = 0 u 0 S t = u 1 N e S b e a u = 0
7 6 abbidv P = e S b e a t | u 0 S t = u 1 N P u = 0 = t | u 0 S t = u 1 N e S b e a u = 0
8 7 ad2antll N 0 S V 1 N S P mzPoly S a Fin b mzPoly a a S P = e S b e a t | u 0 S t = u 1 N P u = 0 = t | u 0 S t = u 1 N e S b e a u = 0
9 simplll N 0 S V 1 N S a Fin b mzPoly a a S N 0
10 simplrl N 0 S V 1 N S a Fin b mzPoly a a S a Fin
11 fzfi 1 N Fin
12 unfi a Fin 1 N Fin a 1 N Fin
13 10 11 12 sylancl N 0 S V 1 N S a Fin b mzPoly a a S a 1 N Fin
14 ssun2 1 N a 1 N
15 14 a1i N 0 S V 1 N S a Fin b mzPoly a a S 1 N a 1 N
16 eldioph2lem1 N 0 a 1 N Fin 1 N a 1 N c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N
17 9 13 15 16 syl3anc N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N
18 f1ococnv2 d : 1 c 1-1 onto a 1 N d d -1 = I a 1 N
19 18 ad2antrl N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N d d -1 = I a 1 N
20 19 reseq1d N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N d d -1 a = I a 1 N a
21 ssun1 a a 1 N
22 resabs1 a a 1 N I a 1 N a = I a
23 21 22 ax-mp I a 1 N a = I a
24 20 23 eqtr2di N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N I a = d d -1 a
25 resco d d -1 a = d d -1 a
26 24 25 eqtrdi N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N I a = d d -1 a
27 26 adantr N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N e S I a = d d -1 a
28 27 coeq2d N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N e S e I a = e d d -1 a
29 coires1 e I a = e a
30 coass e d d -1 a = e d d -1 a
31 30 eqcomi e d d -1 a = e d d -1 a
32 28 29 31 3eqtr3g N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N e S e a = e d d -1 a
33 32 fveq2d N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N e S b e a = b e d d -1 a
34 ovexd N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N e S 1 c V
35 simpr N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N e S e S
36 f1of1 d : 1 c 1-1 onto a 1 N d : 1 c 1-1 a 1 N
37 36 ad2antrl N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N d : 1 c 1-1 a 1 N
38 simpr N 0 S V 1 N S a Fin b mzPoly a a S a S
39 simprr N 0 S V 1 N S 1 N S
40 39 ad2antrr N 0 S V 1 N S a Fin b mzPoly a a S 1 N S
41 38 40 unssd N 0 S V 1 N S a Fin b mzPoly a a S a 1 N S
42 41 ad2antrr N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N a 1 N S
43 f1ss d : 1 c 1-1 a 1 N a 1 N S d : 1 c 1-1 S
44 37 42 43 syl2anc N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N d : 1 c 1-1 S
45 f1f d : 1 c 1-1 S d : 1 c S
46 44 45 syl N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N d : 1 c S
47 46 adantr N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N e S d : 1 c S
48 mapco2g 1 c V e S d : 1 c S e d 1 c
49 34 35 47 48 syl3anc N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N e S e d 1 c
50 coeq1 h = e d h d -1 a = e d d -1 a
51 50 fveq2d h = e d b h d -1 a = b e d d -1 a
52 eqid h 1 c b h d -1 a = h 1 c b h d -1 a
53 fvex b e d d -1 a V
54 51 52 53 fvmpt e d 1 c h 1 c b h d -1 a e d = b e d d -1 a
55 49 54 syl N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N e S h 1 c b h d -1 a e d = b e d d -1 a
56 33 55 eqtr4d N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N e S b e a = h 1 c b h d -1 a e d
57 56 mpteq2dva N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N e S b e a = e S h 1 c b h d -1 a e d
58 57 fveq1d N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N e S b e a u = e S h 1 c b h d -1 a e d u
59 58 eqeq1d N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N e S b e a u = 0 e S h 1 c b h d -1 a e d u = 0
60 59 anbi2d N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N t = u 1 N e S b e a u = 0 t = u 1 N e S h 1 c b h d -1 a e d u = 0
61 60 rexbidv N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N u 0 S t = u 1 N e S b e a u = 0 u 0 S t = u 1 N e S h 1 c b h d -1 a e d u = 0
62 61 abbidv N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N t | u 0 S t = u 1 N e S b e a u = 0 = t | u 0 S t = u 1 N e S h 1 c b h d -1 a e d u = 0
63 simplrl N 0 S V 1 N S a Fin b mzPoly a S V
64 63 ad3antrrr N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N S V
65 simprr N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N d 1 N = I 1 N
66 diophrw S V d : 1 c 1-1 S d 1 N = I 1 N t | u 0 S t = u 1 N e S h 1 c b h d -1 a e d u = 0 = t | g 0 1 c t = g 1 N h 1 c b h d -1 a g = 0
67 64 44 65 66 syl3anc N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N t | u 0 S t = u 1 N e S h 1 c b h d -1 a e d u = 0 = t | g 0 1 c t = g 1 N h 1 c b h d -1 a g = 0
68 62 67 eqtrd N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N t | u 0 S t = u 1 N e S b e a u = 0 = t | g 0 1 c t = g 1 N h 1 c b h d -1 a g = 0
69 simp-5l N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N N 0
70 simplrl N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N c N
71 ovexd N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N 1 c V
72 simplrr N 0 S V 1 N S a Fin b mzPoly a a S b mzPoly a
73 72 ad2antrr N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N b mzPoly a
74 f1ocnv d : 1 c 1-1 onto a 1 N d -1 : a 1 N 1-1 onto 1 c
75 f1of d -1 : a 1 N 1-1 onto 1 c d -1 : a 1 N 1 c
76 74 75 syl d : 1 c 1-1 onto a 1 N d -1 : a 1 N 1 c
77 fssres d -1 : a 1 N 1 c a a 1 N d -1 a : a 1 c
78 76 21 77 sylancl d : 1 c 1-1 onto a 1 N d -1 a : a 1 c
79 78 ad2antrl N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N d -1 a : a 1 c
80 mzprename 1 c V b mzPoly a d -1 a : a 1 c h 1 c b h d -1 a mzPoly 1 c
81 71 73 79 80 syl3anc N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N h 1 c b h d -1 a mzPoly 1 c
82 eldioph N 0 c N h 1 c b h d -1 a mzPoly 1 c t | g 0 1 c t = g 1 N h 1 c b h d -1 a g = 0 Dioph N
83 69 70 81 82 syl3anc N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N t | g 0 1 c t = g 1 N h 1 c b h d -1 a g = 0 Dioph N
84 68 83 eqeltrd N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N t | u 0 S t = u 1 N e S b e a u = 0 Dioph N
85 84 ex N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N t | u 0 S t = u 1 N e S b e a u = 0 Dioph N
86 85 rexlimdvva N 0 S V 1 N S a Fin b mzPoly a a S c N d V d : 1 c 1-1 onto a 1 N d 1 N = I 1 N t | u 0 S t = u 1 N e S b e a u = 0 Dioph N
87 17 86 mpd N 0 S V 1 N S a Fin b mzPoly a a S t | u 0 S t = u 1 N e S b e a u = 0 Dioph N
88 87 exp31 N 0 S V 1 N S a Fin b mzPoly a a S t | u 0 S t = u 1 N e S b e a u = 0 Dioph N
89 88 3adant3 N 0 S V 1 N S P mzPoly S a Fin b mzPoly a a S t | u 0 S t = u 1 N e S b e a u = 0 Dioph N
90 89 imp31 N 0 S V 1 N S P mzPoly S a Fin b mzPoly a a S t | u 0 S t = u 1 N e S b e a u = 0 Dioph N
91 90 adantrr N 0 S V 1 N S P mzPoly S a Fin b mzPoly a a S P = e S b e a t | u 0 S t = u 1 N e S b e a u = 0 Dioph N
92 8 91 eqeltrd N 0 S V 1 N S P mzPoly S a Fin b mzPoly a a S P = e S b e a t | u 0 S t = u 1 N P u = 0 Dioph N
93 92 ex N 0 S V 1 N S P mzPoly S a Fin b mzPoly a a S P = e S b e a t | u 0 S t = u 1 N P u = 0 Dioph N
94 93 rexlimdvva N 0 S V 1 N S P mzPoly S a Fin b mzPoly a a S P = e S b e a t | u 0 S t = u 1 N P u = 0 Dioph N
95 2 94 mpd N 0 S V 1 N S P mzPoly S t | u 0 S t = u 1 N P u = 0 Dioph N