Step |
Hyp |
Ref |
Expression |
1 |
|
mzpcompact2 |
|
2 |
1
|
3ad2ant3 |
|
3 |
|
fveq1 |
|
4 |
3
|
eqeq1d |
|
5 |
4
|
anbi2d |
|
6 |
5
|
rexbidv |
|
7 |
6
|
abbidv |
|
8 |
7
|
ad2antll |
|
9 |
|
simplll |
|
10 |
|
simplrl |
|
11 |
|
fzfi |
|
12 |
|
unfi |
|
13 |
10 11 12
|
sylancl |
|
14 |
|
ssun2 |
|
15 |
14
|
a1i |
|
16 |
|
eldioph2lem1 |
|
17 |
9 13 15 16
|
syl3anc |
|
18 |
|
f1ococnv2 |
|
19 |
18
|
ad2antrl |
|
20 |
19
|
reseq1d |
|
21 |
|
ssun1 |
|
22 |
|
resabs1 |
|
23 |
21 22
|
ax-mp |
|
24 |
20 23
|
eqtr2di |
|
25 |
|
resco |
|
26 |
24 25
|
eqtrdi |
|
27 |
26
|
adantr |
|
28 |
27
|
coeq2d |
|
29 |
|
coires1 |
|
30 |
|
coass |
|
31 |
30
|
eqcomi |
|
32 |
28 29 31
|
3eqtr3g |
|
33 |
32
|
fveq2d |
|
34 |
|
ovexd |
|
35 |
|
simpr |
|
36 |
|
f1of1 |
|
37 |
36
|
ad2antrl |
|
38 |
|
simpr |
|
39 |
|
simprr |
|
40 |
39
|
ad2antrr |
|
41 |
38 40
|
unssd |
|
42 |
41
|
ad2antrr |
|
43 |
|
f1ss |
|
44 |
37 42 43
|
syl2anc |
|
45 |
|
f1f |
|
46 |
44 45
|
syl |
|
47 |
46
|
adantr |
|
48 |
|
mapco2g |
|
49 |
34 35 47 48
|
syl3anc |
|
50 |
|
coeq1 |
|
51 |
50
|
fveq2d |
|
52 |
|
eqid |
|
53 |
|
fvex |
|
54 |
51 52 53
|
fvmpt |
|
55 |
49 54
|
syl |
|
56 |
33 55
|
eqtr4d |
|
57 |
56
|
mpteq2dva |
|
58 |
57
|
fveq1d |
|
59 |
58
|
eqeq1d |
|
60 |
59
|
anbi2d |
|
61 |
60
|
rexbidv |
|
62 |
61
|
abbidv |
|
63 |
|
simplrl |
|
64 |
63
|
ad3antrrr |
|
65 |
|
simprr |
|
66 |
|
diophrw |
|
67 |
64 44 65 66
|
syl3anc |
|
68 |
62 67
|
eqtrd |
|
69 |
|
simp-5l |
|
70 |
|
simplrl |
|
71 |
|
ovexd |
|
72 |
|
simplrr |
|
73 |
72
|
ad2antrr |
|
74 |
|
f1ocnv |
|
75 |
|
f1of |
|
76 |
74 75
|
syl |
|
77 |
|
fssres |
|
78 |
76 21 77
|
sylancl |
|
79 |
78
|
ad2antrl |
|
80 |
|
mzprename |
|
81 |
71 73 79 80
|
syl3anc |
|
82 |
|
eldioph |
|
83 |
69 70 81 82
|
syl3anc |
|
84 |
68 83
|
eqeltrd |
|
85 |
84
|
ex |
|
86 |
85
|
rexlimdvva |
|
87 |
17 86
|
mpd |
|
88 |
87
|
exp31 |
|
89 |
88
|
3adant3 |
|
90 |
89
|
imp31 |
|
91 |
90
|
adantrr |
|
92 |
8 91
|
eqeltrd |
|
93 |
92
|
ex |
|
94 |
93
|
rexlimdvva |
|
95 |
2 94
|
mpd |
|