Metamath Proof Explorer


Theorem eldioph2lem1

Description: Lemma for eldioph2 . Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014)

Ref Expression
Assertion eldioph2lem1 N 0 A Fin 1 N A d N e V e : 1 d 1-1 onto A e 1 N = I 1 N

Proof

Step Hyp Ref Expression
1 nn0re N 0 N
2 1 3ad2ant1 N 0 A Fin 1 N A N
3 2 recnd N 0 A Fin 1 N A N
4 ax-1cn 1
5 addcom N 1 N + 1 = 1 + N
6 3 4 5 sylancl N 0 A Fin 1 N A N + 1 = 1 + N
7 diffi A Fin A 1 N Fin
8 7 3ad2ant2 N 0 A Fin 1 N A A 1 N Fin
9 fzfid N 0 A Fin 1 N A 1 N Fin
10 disjdifr A 1 N 1 N =
11 10 a1i N 0 A Fin 1 N A A 1 N 1 N =
12 hashun A 1 N Fin 1 N Fin A 1 N 1 N = A 1 N 1 N = A 1 N + 1 N
13 8 9 11 12 syl3anc N 0 A Fin 1 N A A 1 N 1 N = A 1 N + 1 N
14 uncom A 1 N 1 N = 1 N A 1 N
15 simp3 N 0 A Fin 1 N A 1 N A
16 undif 1 N A 1 N A 1 N = A
17 15 16 sylib N 0 A Fin 1 N A 1 N A 1 N = A
18 14 17 eqtrid N 0 A Fin 1 N A A 1 N 1 N = A
19 18 fveq2d N 0 A Fin 1 N A A 1 N 1 N = A
20 hashfz1 N 0 1 N = N
21 20 3ad2ant1 N 0 A Fin 1 N A 1 N = N
22 21 oveq2d N 0 A Fin 1 N A A 1 N + 1 N = A 1 N + N
23 13 19 22 3eqtr3d N 0 A Fin 1 N A A = A 1 N + N
24 6 23 oveq12d N 0 A Fin 1 N A N + 1 A = 1 + N A 1 N + N
25 24 fveq2d N 0 A Fin 1 N A N + 1 A = 1 + N A 1 N + N
26 1zzd N 0 A Fin 1 N A 1
27 hashcl A 1 N Fin A 1 N 0
28 8 27 syl N 0 A Fin 1 N A A 1 N 0
29 28 nn0zd N 0 A Fin 1 N A A 1 N
30 nn0z N 0 N
31 30 3ad2ant1 N 0 A Fin 1 N A N
32 fzen 1 A 1 N N 1 A 1 N 1 + N A 1 N + N
33 26 29 31 32 syl3anc N 0 A Fin 1 N A 1 A 1 N 1 + N A 1 N + N
34 33 ensymd N 0 A Fin 1 N A 1 + N A 1 N + N 1 A 1 N
35 fzfi 1 + N A 1 N + N Fin
36 fzfi 1 A 1 N Fin
37 hashen 1 + N A 1 N + N Fin 1 A 1 N Fin 1 + N A 1 N + N = 1 A 1 N 1 + N A 1 N + N 1 A 1 N
38 35 36 37 mp2an 1 + N A 1 N + N = 1 A 1 N 1 + N A 1 N + N 1 A 1 N
39 34 38 sylibr N 0 A Fin 1 N A 1 + N A 1 N + N = 1 A 1 N
40 hashfz1 A 1 N 0 1 A 1 N = A 1 N
41 28 40 syl N 0 A Fin 1 N A 1 A 1 N = A 1 N
42 25 39 41 3eqtrd N 0 A Fin 1 N A N + 1 A = A 1 N
43 fzfi N + 1 A Fin
44 hashen N + 1 A Fin A 1 N Fin N + 1 A = A 1 N N + 1 A A 1 N
45 43 8 44 sylancr N 0 A Fin 1 N A N + 1 A = A 1 N N + 1 A A 1 N
46 42 45 mpbid N 0 A Fin 1 N A N + 1 A A 1 N
47 bren N + 1 A A 1 N a a : N + 1 A 1-1 onto A 1 N
48 46 47 sylib N 0 A Fin 1 N A a a : N + 1 A 1-1 onto A 1 N
49 simpl1 N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N N 0
50 49 nn0zd N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N N
51 simpl2 N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N A Fin
52 hashcl A Fin A 0
53 51 52 syl N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N A 0
54 53 nn0zd N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N A
55 nn0addge2 N A 1 N 0 N A 1 N + N
56 2 28 55 syl2anc N 0 A Fin 1 N A N A 1 N + N
57 56 23 breqtrrd N 0 A Fin 1 N A N A
58 57 adantr N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N N A
59 eluz2 A N N A N A
60 50 54 58 59 syl3anbrc N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N A N
61 vex a V
62 ovex 1 N V
63 resiexg 1 N V I 1 N V
64 62 63 ax-mp I 1 N V
65 61 64 unex a I 1 N V
66 65 a1i N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N a I 1 N V
67 simpr N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N a : N + 1 A 1-1 onto A 1 N
68 f1oi I 1 N : 1 N 1-1 onto 1 N
69 68 a1i N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N I 1 N : 1 N 1-1 onto 1 N
70 incom N + 1 A 1 N = 1 N N + 1 A
71 49 nn0red N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N N
72 71 ltp1d N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N N < N + 1
73 fzdisj N < N + 1 1 N N + 1 A =
74 72 73 syl N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N 1 N N + 1 A =
75 70 74 eqtrid N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N N + 1 A 1 N =
76 10 a1i N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N A 1 N 1 N =
77 f1oun a : N + 1 A 1-1 onto A 1 N I 1 N : 1 N 1-1 onto 1 N N + 1 A 1 N = A 1 N 1 N = a I 1 N : N + 1 A 1 N 1-1 onto A 1 N 1 N
78 67 69 75 76 77 syl22anc N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N a I 1 N : N + 1 A 1 N 1-1 onto A 1 N 1 N
79 uncom N + 1 A 1 N = 1 N N + 1 A
80 fzsplit1nn0 N 0 A 0 N A 1 A = 1 N N + 1 A
81 49 53 58 80 syl3anc N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N 1 A = 1 N N + 1 A
82 79 81 eqtr4id N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N N + 1 A 1 N = 1 A
83 simpl3 N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N 1 N A
84 83 16 sylib N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N 1 N A 1 N = A
85 14 84 eqtrid N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N A 1 N 1 N = A
86 f1oeq23 N + 1 A 1 N = 1 A A 1 N 1 N = A a I 1 N : N + 1 A 1 N 1-1 onto A 1 N 1 N a I 1 N : 1 A 1-1 onto A
87 82 85 86 syl2anc N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N a I 1 N : N + 1 A 1 N 1-1 onto A 1 N 1 N a I 1 N : 1 A 1-1 onto A
88 78 87 mpbid N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N a I 1 N : 1 A 1-1 onto A
89 resundir a I 1 N 1 N = a 1 N I 1 N 1 N
90 dmres dom a 1 N = 1 N dom a
91 f1odm a : N + 1 A 1-1 onto A 1 N dom a = N + 1 A
92 91 adantl N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N dom a = N + 1 A
93 92 ineq2d N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N 1 N dom a = 1 N N + 1 A
94 93 74 eqtrd N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N 1 N dom a =
95 90 94 eqtrid N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N dom a 1 N =
96 relres Rel a 1 N
97 reldm0 Rel a 1 N a 1 N = dom a 1 N =
98 96 97 ax-mp a 1 N = dom a 1 N =
99 95 98 sylibr N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N a 1 N =
100 residm I 1 N 1 N = I 1 N
101 100 a1i N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N I 1 N 1 N = I 1 N
102 99 101 uneq12d N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N a 1 N I 1 N 1 N = I 1 N
103 uncom I 1 N = I 1 N
104 un0 I 1 N = I 1 N
105 103 104 eqtri I 1 N = I 1 N
106 102 105 eqtrdi N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N a 1 N I 1 N 1 N = I 1 N
107 89 106 eqtrid N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N a I 1 N 1 N = I 1 N
108 oveq2 d = A 1 d = 1 A
109 108 f1oeq2d d = A e : 1 d 1-1 onto A e : 1 A 1-1 onto A
110 109 anbi1d d = A e : 1 d 1-1 onto A e 1 N = I 1 N e : 1 A 1-1 onto A e 1 N = I 1 N
111 f1oeq1 e = a I 1 N e : 1 A 1-1 onto A a I 1 N : 1 A 1-1 onto A
112 reseq1 e = a I 1 N e 1 N = a I 1 N 1 N
113 112 eqeq1d e = a I 1 N e 1 N = I 1 N a I 1 N 1 N = I 1 N
114 111 113 anbi12d e = a I 1 N e : 1 A 1-1 onto A e 1 N = I 1 N a I 1 N : 1 A 1-1 onto A a I 1 N 1 N = I 1 N
115 110 114 rspc2ev A N a I 1 N V a I 1 N : 1 A 1-1 onto A a I 1 N 1 N = I 1 N d N e V e : 1 d 1-1 onto A e 1 N = I 1 N
116 60 66 88 107 115 syl112anc N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N d N e V e : 1 d 1-1 onto A e 1 N = I 1 N
117 48 116 exlimddv N 0 A Fin 1 N A d N e V e : 1 d 1-1 onto A e 1 N = I 1 N