| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0re |
|
| 2 |
1
|
3ad2ant1 |
|
| 3 |
2
|
recnd |
|
| 4 |
|
ax-1cn |
|
| 5 |
|
addcom |
|
| 6 |
3 4 5
|
sylancl |
|
| 7 |
|
diffi |
|
| 8 |
7
|
3ad2ant2 |
|
| 9 |
|
fzfid |
|
| 10 |
|
disjdifr |
|
| 11 |
10
|
a1i |
|
| 12 |
|
hashun |
|
| 13 |
8 9 11 12
|
syl3anc |
|
| 14 |
|
uncom |
|
| 15 |
|
simp3 |
|
| 16 |
|
undif |
|
| 17 |
15 16
|
sylib |
|
| 18 |
14 17
|
eqtrid |
|
| 19 |
18
|
fveq2d |
|
| 20 |
|
hashfz1 |
|
| 21 |
20
|
3ad2ant1 |
|
| 22 |
21
|
oveq2d |
|
| 23 |
13 19 22
|
3eqtr3d |
|
| 24 |
6 23
|
oveq12d |
|
| 25 |
24
|
fveq2d |
|
| 26 |
|
1zzd |
|
| 27 |
|
hashcl |
|
| 28 |
8 27
|
syl |
|
| 29 |
28
|
nn0zd |
|
| 30 |
|
nn0z |
|
| 31 |
30
|
3ad2ant1 |
|
| 32 |
|
fzen |
|
| 33 |
26 29 31 32
|
syl3anc |
|
| 34 |
33
|
ensymd |
|
| 35 |
|
fzfi |
|
| 36 |
|
fzfi |
|
| 37 |
|
hashen |
|
| 38 |
35 36 37
|
mp2an |
|
| 39 |
34 38
|
sylibr |
|
| 40 |
|
hashfz1 |
|
| 41 |
28 40
|
syl |
|
| 42 |
25 39 41
|
3eqtrd |
|
| 43 |
|
fzfi |
|
| 44 |
|
hashen |
|
| 45 |
43 8 44
|
sylancr |
|
| 46 |
42 45
|
mpbid |
|
| 47 |
|
bren |
|
| 48 |
46 47
|
sylib |
|
| 49 |
|
simpl1 |
|
| 50 |
49
|
nn0zd |
|
| 51 |
|
simpl2 |
|
| 52 |
|
hashcl |
|
| 53 |
51 52
|
syl |
|
| 54 |
53
|
nn0zd |
|
| 55 |
|
nn0addge2 |
|
| 56 |
2 28 55
|
syl2anc |
|
| 57 |
56 23
|
breqtrrd |
|
| 58 |
57
|
adantr |
|
| 59 |
|
eluz2 |
|
| 60 |
50 54 58 59
|
syl3anbrc |
|
| 61 |
|
vex |
|
| 62 |
|
ovex |
|
| 63 |
|
resiexg |
|
| 64 |
62 63
|
ax-mp |
|
| 65 |
61 64
|
unex |
|
| 66 |
65
|
a1i |
|
| 67 |
|
simpr |
|
| 68 |
|
f1oi |
|
| 69 |
68
|
a1i |
|
| 70 |
|
incom |
|
| 71 |
49
|
nn0red |
|
| 72 |
71
|
ltp1d |
|
| 73 |
|
fzdisj |
|
| 74 |
72 73
|
syl |
|
| 75 |
70 74
|
eqtrid |
|
| 76 |
10
|
a1i |
|
| 77 |
|
f1oun |
|
| 78 |
67 69 75 76 77
|
syl22anc |
|
| 79 |
|
uncom |
|
| 80 |
|
fzsplit1nn0 |
|
| 81 |
49 53 58 80
|
syl3anc |
|
| 82 |
79 81
|
eqtr4id |
|
| 83 |
|
simpl3 |
|
| 84 |
83 16
|
sylib |
|
| 85 |
14 84
|
eqtrid |
|
| 86 |
|
f1oeq23 |
|
| 87 |
82 85 86
|
syl2anc |
|
| 88 |
78 87
|
mpbid |
|
| 89 |
|
resundir |
|
| 90 |
|
dmres |
|
| 91 |
|
f1odm |
|
| 92 |
91
|
adantl |
|
| 93 |
92
|
ineq2d |
|
| 94 |
93 74
|
eqtrd |
|
| 95 |
90 94
|
eqtrid |
|
| 96 |
|
relres |
|
| 97 |
|
reldm0 |
|
| 98 |
96 97
|
ax-mp |
|
| 99 |
95 98
|
sylibr |
|
| 100 |
|
residm |
|
| 101 |
100
|
a1i |
|
| 102 |
99 101
|
uneq12d |
|
| 103 |
|
uncom |
|
| 104 |
|
un0 |
|
| 105 |
103 104
|
eqtri |
|
| 106 |
102 105
|
eqtrdi |
|
| 107 |
89 106
|
eqtrid |
|
| 108 |
|
oveq2 |
|
| 109 |
108
|
f1oeq2d |
|
| 110 |
109
|
anbi1d |
|
| 111 |
|
f1oeq1 |
|
| 112 |
|
reseq1 |
|
| 113 |
112
|
eqeq1d |
|
| 114 |
111 113
|
anbi12d |
|
| 115 |
110 114
|
rspc2ev |
|
| 116 |
60 66 88 107 115
|
syl112anc |
|
| 117 |
48 116
|
exlimddv |
|