| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
|
| 2 |
|
fzfi |
|
| 3 |
|
difinf |
|
| 4 |
1 2 3
|
sylancl |
|
| 5 |
|
fzfi |
|
| 6 |
|
diffi |
|
| 7 |
5 6
|
ax-mp |
|
| 8 |
|
isinffi |
|
| 9 |
4 7 8
|
sylancl |
|
| 10 |
|
f1f1orn |
|
| 11 |
10
|
adantl |
|
| 12 |
|
f1oi |
|
| 13 |
12
|
a1i |
|
| 14 |
|
disjdifr |
|
| 15 |
14
|
a1i |
|
| 16 |
|
f1f |
|
| 17 |
16
|
frnd |
|
| 18 |
17
|
adantl |
|
| 19 |
18
|
ssrind |
|
| 20 |
|
disjdifr |
|
| 21 |
19 20
|
sseqtrdi |
|
| 22 |
|
ss0 |
|
| 23 |
21 22
|
syl |
|
| 24 |
|
f1oun |
|
| 25 |
11 13 15 23 24
|
syl22anc |
|
| 26 |
|
f1of1 |
|
| 27 |
25 26
|
syl |
|
| 28 |
|
uncom |
|
| 29 |
|
simplrr |
|
| 30 |
|
fzss2 |
|
| 31 |
29 30
|
syl |
|
| 32 |
|
undif |
|
| 33 |
31 32
|
sylib |
|
| 34 |
28 33
|
eqtrid |
|
| 35 |
|
f1eq2 |
|
| 36 |
34 35
|
syl |
|
| 37 |
27 36
|
mpbid |
|
| 38 |
17
|
difss2d |
|
| 39 |
38
|
adantl |
|
| 40 |
|
simplrl |
|
| 41 |
39 40
|
unssd |
|
| 42 |
|
f1ss |
|
| 43 |
37 41 42
|
syl2anc |
|
| 44 |
|
resundir |
|
| 45 |
|
dmres |
|
| 46 |
|
incom |
|
| 47 |
|
f1dm |
|
| 48 |
47
|
adantl |
|
| 49 |
48
|
ineq1d |
|
| 50 |
49 14
|
eqtrdi |
|
| 51 |
46 50
|
eqtrid |
|
| 52 |
45 51
|
eqtrid |
|
| 53 |
|
relres |
|
| 54 |
|
reldm0 |
|
| 55 |
53 54
|
ax-mp |
|
| 56 |
52 55
|
sylibr |
|
| 57 |
|
residm |
|
| 58 |
57
|
a1i |
|
| 59 |
56 58
|
uneq12d |
|
| 60 |
|
uncom |
|
| 61 |
|
un0 |
|
| 62 |
60 61
|
eqtri |
|
| 63 |
59 62
|
eqtrdi |
|
| 64 |
44 63
|
eqtrid |
|
| 65 |
|
vex |
|
| 66 |
|
ovex |
|
| 67 |
|
resiexg |
|
| 68 |
66 67
|
ax-mp |
|
| 69 |
65 68
|
unex |
|
| 70 |
|
f1eq1 |
|
| 71 |
|
reseq1 |
|
| 72 |
71
|
eqeq1d |
|
| 73 |
70 72
|
anbi12d |
|
| 74 |
69 73
|
spcev |
|
| 75 |
43 64 74
|
syl2anc |
|
| 76 |
9 75
|
exlimddv |
|