Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
|- ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) -> -. S e. Fin ) |
2 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
3 |
|
difinf |
|- ( ( -. S e. Fin /\ ( 1 ... N ) e. Fin ) -> -. ( S \ ( 1 ... N ) ) e. Fin ) |
4 |
1 2 3
|
sylancl |
|- ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) -> -. ( S \ ( 1 ... N ) ) e. Fin ) |
5 |
|
fzfi |
|- ( 1 ... A ) e. Fin |
6 |
|
diffi |
|- ( ( 1 ... A ) e. Fin -> ( ( 1 ... A ) \ ( 1 ... N ) ) e. Fin ) |
7 |
5 6
|
ax-mp |
|- ( ( 1 ... A ) \ ( 1 ... N ) ) e. Fin |
8 |
|
isinffi |
|- ( ( -. ( S \ ( 1 ... N ) ) e. Fin /\ ( ( 1 ... A ) \ ( 1 ... N ) ) e. Fin ) -> E. a a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) |
9 |
4 7 8
|
sylancl |
|- ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) -> E. a a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) |
10 |
|
f1f1orn |
|- ( a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) -> a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-onto-> ran a ) |
11 |
10
|
adantl |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-onto-> ran a ) |
12 |
|
f1oi |
|- ( _I |` ( 1 ... N ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) |
13 |
12
|
a1i |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( _I |` ( 1 ... N ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
14 |
|
disjdifr |
|- ( ( ( 1 ... A ) \ ( 1 ... N ) ) i^i ( 1 ... N ) ) = (/) |
15 |
14
|
a1i |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( ( ( 1 ... A ) \ ( 1 ... N ) ) i^i ( 1 ... N ) ) = (/) ) |
16 |
|
f1f |
|- ( a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) -> a : ( ( 1 ... A ) \ ( 1 ... N ) ) --> ( S \ ( 1 ... N ) ) ) |
17 |
16
|
frnd |
|- ( a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) -> ran a C_ ( S \ ( 1 ... N ) ) ) |
18 |
17
|
adantl |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ran a C_ ( S \ ( 1 ... N ) ) ) |
19 |
18
|
ssrind |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( ran a i^i ( 1 ... N ) ) C_ ( ( S \ ( 1 ... N ) ) i^i ( 1 ... N ) ) ) |
20 |
|
disjdifr |
|- ( ( S \ ( 1 ... N ) ) i^i ( 1 ... N ) ) = (/) |
21 |
19 20
|
sseqtrdi |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( ran a i^i ( 1 ... N ) ) C_ (/) ) |
22 |
|
ss0 |
|- ( ( ran a i^i ( 1 ... N ) ) C_ (/) -> ( ran a i^i ( 1 ... N ) ) = (/) ) |
23 |
21 22
|
syl |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( ran a i^i ( 1 ... N ) ) = (/) ) |
24 |
|
f1oun |
|- ( ( ( a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-onto-> ran a /\ ( _I |` ( 1 ... N ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) /\ ( ( ( ( 1 ... A ) \ ( 1 ... N ) ) i^i ( 1 ... N ) ) = (/) /\ ( ran a i^i ( 1 ... N ) ) = (/) ) ) -> ( a u. ( _I |` ( 1 ... N ) ) ) : ( ( ( 1 ... A ) \ ( 1 ... N ) ) u. ( 1 ... N ) ) -1-1-onto-> ( ran a u. ( 1 ... N ) ) ) |
25 |
11 13 15 23 24
|
syl22anc |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( a u. ( _I |` ( 1 ... N ) ) ) : ( ( ( 1 ... A ) \ ( 1 ... N ) ) u. ( 1 ... N ) ) -1-1-onto-> ( ran a u. ( 1 ... N ) ) ) |
26 |
|
f1of1 |
|- ( ( a u. ( _I |` ( 1 ... N ) ) ) : ( ( ( 1 ... A ) \ ( 1 ... N ) ) u. ( 1 ... N ) ) -1-1-onto-> ( ran a u. ( 1 ... N ) ) -> ( a u. ( _I |` ( 1 ... N ) ) ) : ( ( ( 1 ... A ) \ ( 1 ... N ) ) u. ( 1 ... N ) ) -1-1-> ( ran a u. ( 1 ... N ) ) ) |
27 |
25 26
|
syl |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( a u. ( _I |` ( 1 ... N ) ) ) : ( ( ( 1 ... A ) \ ( 1 ... N ) ) u. ( 1 ... N ) ) -1-1-> ( ran a u. ( 1 ... N ) ) ) |
28 |
|
uncom |
|- ( ( ( 1 ... A ) \ ( 1 ... N ) ) u. ( 1 ... N ) ) = ( ( 1 ... N ) u. ( ( 1 ... A ) \ ( 1 ... N ) ) ) |
29 |
|
simplrr |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> A e. ( ZZ>= ` N ) ) |
30 |
|
fzss2 |
|- ( A e. ( ZZ>= ` N ) -> ( 1 ... N ) C_ ( 1 ... A ) ) |
31 |
29 30
|
syl |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( 1 ... N ) C_ ( 1 ... A ) ) |
32 |
|
undif |
|- ( ( 1 ... N ) C_ ( 1 ... A ) <-> ( ( 1 ... N ) u. ( ( 1 ... A ) \ ( 1 ... N ) ) ) = ( 1 ... A ) ) |
33 |
31 32
|
sylib |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( ( 1 ... N ) u. ( ( 1 ... A ) \ ( 1 ... N ) ) ) = ( 1 ... A ) ) |
34 |
28 33
|
syl5eq |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( ( ( 1 ... A ) \ ( 1 ... N ) ) u. ( 1 ... N ) ) = ( 1 ... A ) ) |
35 |
|
f1eq2 |
|- ( ( ( ( 1 ... A ) \ ( 1 ... N ) ) u. ( 1 ... N ) ) = ( 1 ... A ) -> ( ( a u. ( _I |` ( 1 ... N ) ) ) : ( ( ( 1 ... A ) \ ( 1 ... N ) ) u. ( 1 ... N ) ) -1-1-> ( ran a u. ( 1 ... N ) ) <-> ( a u. ( _I |` ( 1 ... N ) ) ) : ( 1 ... A ) -1-1-> ( ran a u. ( 1 ... N ) ) ) ) |
36 |
34 35
|
syl |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( ( a u. ( _I |` ( 1 ... N ) ) ) : ( ( ( 1 ... A ) \ ( 1 ... N ) ) u. ( 1 ... N ) ) -1-1-> ( ran a u. ( 1 ... N ) ) <-> ( a u. ( _I |` ( 1 ... N ) ) ) : ( 1 ... A ) -1-1-> ( ran a u. ( 1 ... N ) ) ) ) |
37 |
27 36
|
mpbid |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( a u. ( _I |` ( 1 ... N ) ) ) : ( 1 ... A ) -1-1-> ( ran a u. ( 1 ... N ) ) ) |
38 |
17
|
difss2d |
|- ( a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) -> ran a C_ S ) |
39 |
38
|
adantl |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ran a C_ S ) |
40 |
|
simplrl |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( 1 ... N ) C_ S ) |
41 |
39 40
|
unssd |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( ran a u. ( 1 ... N ) ) C_ S ) |
42 |
|
f1ss |
|- ( ( ( a u. ( _I |` ( 1 ... N ) ) ) : ( 1 ... A ) -1-1-> ( ran a u. ( 1 ... N ) ) /\ ( ran a u. ( 1 ... N ) ) C_ S ) -> ( a u. ( _I |` ( 1 ... N ) ) ) : ( 1 ... A ) -1-1-> S ) |
43 |
37 41 42
|
syl2anc |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( a u. ( _I |` ( 1 ... N ) ) ) : ( 1 ... A ) -1-1-> S ) |
44 |
|
resundir |
|- ( ( a u. ( _I |` ( 1 ... N ) ) ) |` ( 1 ... N ) ) = ( ( a |` ( 1 ... N ) ) u. ( ( _I |` ( 1 ... N ) ) |` ( 1 ... N ) ) ) |
45 |
|
dmres |
|- dom ( a |` ( 1 ... N ) ) = ( ( 1 ... N ) i^i dom a ) |
46 |
|
incom |
|- ( ( 1 ... N ) i^i dom a ) = ( dom a i^i ( 1 ... N ) ) |
47 |
|
f1dm |
|- ( a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) -> dom a = ( ( 1 ... A ) \ ( 1 ... N ) ) ) |
48 |
47
|
adantl |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> dom a = ( ( 1 ... A ) \ ( 1 ... N ) ) ) |
49 |
48
|
ineq1d |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( dom a i^i ( 1 ... N ) ) = ( ( ( 1 ... A ) \ ( 1 ... N ) ) i^i ( 1 ... N ) ) ) |
50 |
49 14
|
eqtrdi |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( dom a i^i ( 1 ... N ) ) = (/) ) |
51 |
46 50
|
syl5eq |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( ( 1 ... N ) i^i dom a ) = (/) ) |
52 |
45 51
|
syl5eq |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> dom ( a |` ( 1 ... N ) ) = (/) ) |
53 |
|
relres |
|- Rel ( a |` ( 1 ... N ) ) |
54 |
|
reldm0 |
|- ( Rel ( a |` ( 1 ... N ) ) -> ( ( a |` ( 1 ... N ) ) = (/) <-> dom ( a |` ( 1 ... N ) ) = (/) ) ) |
55 |
53 54
|
ax-mp |
|- ( ( a |` ( 1 ... N ) ) = (/) <-> dom ( a |` ( 1 ... N ) ) = (/) ) |
56 |
52 55
|
sylibr |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( a |` ( 1 ... N ) ) = (/) ) |
57 |
|
residm |
|- ( ( _I |` ( 1 ... N ) ) |` ( 1 ... N ) ) = ( _I |` ( 1 ... N ) ) |
58 |
57
|
a1i |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( ( _I |` ( 1 ... N ) ) |` ( 1 ... N ) ) = ( _I |` ( 1 ... N ) ) ) |
59 |
56 58
|
uneq12d |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( ( a |` ( 1 ... N ) ) u. ( ( _I |` ( 1 ... N ) ) |` ( 1 ... N ) ) ) = ( (/) u. ( _I |` ( 1 ... N ) ) ) ) |
60 |
|
uncom |
|- ( (/) u. ( _I |` ( 1 ... N ) ) ) = ( ( _I |` ( 1 ... N ) ) u. (/) ) |
61 |
|
un0 |
|- ( ( _I |` ( 1 ... N ) ) u. (/) ) = ( _I |` ( 1 ... N ) ) |
62 |
60 61
|
eqtri |
|- ( (/) u. ( _I |` ( 1 ... N ) ) ) = ( _I |` ( 1 ... N ) ) |
63 |
59 62
|
eqtrdi |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( ( a |` ( 1 ... N ) ) u. ( ( _I |` ( 1 ... N ) ) |` ( 1 ... N ) ) ) = ( _I |` ( 1 ... N ) ) ) |
64 |
44 63
|
syl5eq |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> ( ( a u. ( _I |` ( 1 ... N ) ) ) |` ( 1 ... N ) ) = ( _I |` ( 1 ... N ) ) ) |
65 |
|
vex |
|- a e. _V |
66 |
|
ovex |
|- ( 1 ... N ) e. _V |
67 |
|
resiexg |
|- ( ( 1 ... N ) e. _V -> ( _I |` ( 1 ... N ) ) e. _V ) |
68 |
66 67
|
ax-mp |
|- ( _I |` ( 1 ... N ) ) e. _V |
69 |
65 68
|
unex |
|- ( a u. ( _I |` ( 1 ... N ) ) ) e. _V |
70 |
|
f1eq1 |
|- ( c = ( a u. ( _I |` ( 1 ... N ) ) ) -> ( c : ( 1 ... A ) -1-1-> S <-> ( a u. ( _I |` ( 1 ... N ) ) ) : ( 1 ... A ) -1-1-> S ) ) |
71 |
|
reseq1 |
|- ( c = ( a u. ( _I |` ( 1 ... N ) ) ) -> ( c |` ( 1 ... N ) ) = ( ( a u. ( _I |` ( 1 ... N ) ) ) |` ( 1 ... N ) ) ) |
72 |
71
|
eqeq1d |
|- ( c = ( a u. ( _I |` ( 1 ... N ) ) ) -> ( ( c |` ( 1 ... N ) ) = ( _I |` ( 1 ... N ) ) <-> ( ( a u. ( _I |` ( 1 ... N ) ) ) |` ( 1 ... N ) ) = ( _I |` ( 1 ... N ) ) ) ) |
73 |
70 72
|
anbi12d |
|- ( c = ( a u. ( _I |` ( 1 ... N ) ) ) -> ( ( c : ( 1 ... A ) -1-1-> S /\ ( c |` ( 1 ... N ) ) = ( _I |` ( 1 ... N ) ) ) <-> ( ( a u. ( _I |` ( 1 ... N ) ) ) : ( 1 ... A ) -1-1-> S /\ ( ( a u. ( _I |` ( 1 ... N ) ) ) |` ( 1 ... N ) ) = ( _I |` ( 1 ... N ) ) ) ) ) |
74 |
69 73
|
spcev |
|- ( ( ( a u. ( _I |` ( 1 ... N ) ) ) : ( 1 ... A ) -1-1-> S /\ ( ( a u. ( _I |` ( 1 ... N ) ) ) |` ( 1 ... N ) ) = ( _I |` ( 1 ... N ) ) ) -> E. c ( c : ( 1 ... A ) -1-1-> S /\ ( c |` ( 1 ... N ) ) = ( _I |` ( 1 ... N ) ) ) ) |
75 |
43 64 74
|
syl2anc |
|- ( ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) /\ a : ( ( 1 ... A ) \ ( 1 ... N ) ) -1-1-> ( S \ ( 1 ... N ) ) ) -> E. c ( c : ( 1 ... A ) -1-1-> S /\ ( c |` ( 1 ... N ) ) = ( _I |` ( 1 ... N ) ) ) ) |
76 |
9 75
|
exlimddv |
|- ( ( ( N e. NN0 /\ -. S e. Fin ) /\ ( ( 1 ... N ) C_ S /\ A e. ( ZZ>= ` N ) ) ) -> E. c ( c : ( 1 ... A ) -1-1-> S /\ ( c |` ( 1 ... N ) ) = ( _I |` ( 1 ... N ) ) ) ) |