Metamath Proof Explorer


Theorem mzpmulmpt

Description: Product of polynomial functions is polynomial. Maps-to version of mzpmulmpt . (Contributed by Stefan O'Rear, 5-Oct-2014)

Ref Expression
Assertion mzpmulmpt xVAmzPolyVxVBmzPolyVxVABmzPolyV

Proof

Step Hyp Ref Expression
1 mzpf xVAmzPolyVxVA:V
2 1 ffnd xVAmzPolyVxVAFnV
3 mzpf xVBmzPolyVxVB:V
4 3 ffnd xVBmzPolyVxVBFnV
5 ovex VV
6 ofmpteq VVxVAFnVxVBFnVxVA×fxVB=xVAB
7 5 6 mp3an1 xVAFnVxVBFnVxVA×fxVB=xVAB
8 2 4 7 syl2an xVAmzPolyVxVBmzPolyVxVA×fxVB=xVAB
9 mzpmul xVAmzPolyVxVBmzPolyVxVA×fxVBmzPolyV
10 8 9 eqeltrrd xVAmzPolyVxVBmzPolyVxVABmzPolyV