Metamath Proof Explorer


Theorem ofmpteq

Description: Value of a pointwise operation on two functions defined using maps-to notation. (Contributed by Stefan O'Rear, 5-Oct-2014)

Ref Expression
Assertion ofmpteq AVxABFnAxACFnAxABRfxAC=xABRC

Proof

Step Hyp Ref Expression
1 simp1 AVxABFnAxACFnAAV
2 simpr AVxABFnAxACFnAaAaA
3 simpl2 AVxABFnAxACFnAaAxABFnA
4 eqid xAB=xAB
5 4 mptfng xABVxABFnA
6 3 5 sylibr AVxABFnAxACFnAaAxABV
7 nfcsb1v _xa/xB
8 7 nfel1 xa/xBV
9 csbeq1a x=aB=a/xB
10 9 eleq1d x=aBVa/xBV
11 8 10 rspc aAxABVa/xBV
12 2 6 11 sylc AVxABFnAxACFnAaAa/xBV
13 simpl3 AVxABFnAxACFnAaAxACFnA
14 eqid xAC=xAC
15 14 mptfng xACVxACFnA
16 13 15 sylibr AVxABFnAxACFnAaAxACV
17 nfcsb1v _xa/xC
18 17 nfel1 xa/xCV
19 csbeq1a x=aC=a/xC
20 19 eleq1d x=aCVa/xCV
21 18 20 rspc aAxACVa/xCV
22 2 16 21 sylc AVxABFnAxACFnAaAa/xCV
23 nfcv _aB
24 23 7 9 cbvmpt xAB=aAa/xB
25 24 a1i AVxABFnAxACFnAxAB=aAa/xB
26 nfcv _aC
27 26 17 19 cbvmpt xAC=aAa/xC
28 27 a1i AVxABFnAxACFnAxAC=aAa/xC
29 1 12 22 25 28 offval2 AVxABFnAxACFnAxABRfxAC=aAa/xBRa/xC
30 nfcv _aBRC
31 nfcv _xR
32 7 31 17 nfov _xa/xBRa/xC
33 9 19 oveq12d x=aBRC=a/xBRa/xC
34 30 32 33 cbvmpt xABRC=aAa/xBRa/xC
35 29 34 eqtr4di AVxABFnAxACFnAxABRfxAC=xABRC