Metamath Proof Explorer


Theorem ofmpteq

Description: Value of a pointwise operation on two functions defined using maps-to notation. (Contributed by Stefan O'Rear, 5-Oct-2014)

Ref Expression
Assertion ofmpteq A V x A B Fn A x A C Fn A x A B R f x A C = x A B R C

Proof

Step Hyp Ref Expression
1 simp1 A V x A B Fn A x A C Fn A A V
2 simpr A V x A B Fn A x A C Fn A a A a A
3 simpl2 A V x A B Fn A x A C Fn A a A x A B Fn A
4 eqid x A B = x A B
5 4 mptfng x A B V x A B Fn A
6 3 5 sylibr A V x A B Fn A x A C Fn A a A x A B V
7 nfcsb1v _ x a / x B
8 7 nfel1 x a / x B V
9 csbeq1a x = a B = a / x B
10 9 eleq1d x = a B V a / x B V
11 8 10 rspc a A x A B V a / x B V
12 2 6 11 sylc A V x A B Fn A x A C Fn A a A a / x B V
13 simpl3 A V x A B Fn A x A C Fn A a A x A C Fn A
14 eqid x A C = x A C
15 14 mptfng x A C V x A C Fn A
16 13 15 sylibr A V x A B Fn A x A C Fn A a A x A C V
17 nfcsb1v _ x a / x C
18 17 nfel1 x a / x C V
19 csbeq1a x = a C = a / x C
20 19 eleq1d x = a C V a / x C V
21 18 20 rspc a A x A C V a / x C V
22 2 16 21 sylc A V x A B Fn A x A C Fn A a A a / x C V
23 nfcv _ a B
24 23 7 9 cbvmpt x A B = a A a / x B
25 24 a1i A V x A B Fn A x A C Fn A x A B = a A a / x B
26 nfcv _ a C
27 26 17 19 cbvmpt x A C = a A a / x C
28 27 a1i A V x A B Fn A x A C Fn A x A C = a A a / x C
29 1 12 22 25 28 offval2 A V x A B Fn A x A C Fn A x A B R f x A C = a A a / x B R a / x C
30 nfcv _ a B R C
31 nfcv _ x R
32 7 31 17 nfov _ x a / x B R a / x C
33 9 19 oveq12d x = a B R C = a / x B R a / x C
34 30 32 33 cbvmpt x A B R C = a A a / x B R a / x C
35 29 34 eqtr4di A V x A B Fn A x A C Fn A x A B R f x A C = x A B R C