Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) -> A e. V ) |
2 |
|
simpr |
|- ( ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) /\ a e. A ) -> a e. A ) |
3 |
|
simpl2 |
|- ( ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) /\ a e. A ) -> ( x e. A |-> B ) Fn A ) |
4 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
5 |
4
|
mptfng |
|- ( A. x e. A B e. _V <-> ( x e. A |-> B ) Fn A ) |
6 |
3 5
|
sylibr |
|- ( ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) /\ a e. A ) -> A. x e. A B e. _V ) |
7 |
|
nfcsb1v |
|- F/_ x [_ a / x ]_ B |
8 |
7
|
nfel1 |
|- F/ x [_ a / x ]_ B e. _V |
9 |
|
csbeq1a |
|- ( x = a -> B = [_ a / x ]_ B ) |
10 |
9
|
eleq1d |
|- ( x = a -> ( B e. _V <-> [_ a / x ]_ B e. _V ) ) |
11 |
8 10
|
rspc |
|- ( a e. A -> ( A. x e. A B e. _V -> [_ a / x ]_ B e. _V ) ) |
12 |
2 6 11
|
sylc |
|- ( ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) /\ a e. A ) -> [_ a / x ]_ B e. _V ) |
13 |
|
simpl3 |
|- ( ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) /\ a e. A ) -> ( x e. A |-> C ) Fn A ) |
14 |
|
eqid |
|- ( x e. A |-> C ) = ( x e. A |-> C ) |
15 |
14
|
mptfng |
|- ( A. x e. A C e. _V <-> ( x e. A |-> C ) Fn A ) |
16 |
13 15
|
sylibr |
|- ( ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) /\ a e. A ) -> A. x e. A C e. _V ) |
17 |
|
nfcsb1v |
|- F/_ x [_ a / x ]_ C |
18 |
17
|
nfel1 |
|- F/ x [_ a / x ]_ C e. _V |
19 |
|
csbeq1a |
|- ( x = a -> C = [_ a / x ]_ C ) |
20 |
19
|
eleq1d |
|- ( x = a -> ( C e. _V <-> [_ a / x ]_ C e. _V ) ) |
21 |
18 20
|
rspc |
|- ( a e. A -> ( A. x e. A C e. _V -> [_ a / x ]_ C e. _V ) ) |
22 |
2 16 21
|
sylc |
|- ( ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) /\ a e. A ) -> [_ a / x ]_ C e. _V ) |
23 |
|
nfcv |
|- F/_ a B |
24 |
23 7 9
|
cbvmpt |
|- ( x e. A |-> B ) = ( a e. A |-> [_ a / x ]_ B ) |
25 |
24
|
a1i |
|- ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) -> ( x e. A |-> B ) = ( a e. A |-> [_ a / x ]_ B ) ) |
26 |
|
nfcv |
|- F/_ a C |
27 |
26 17 19
|
cbvmpt |
|- ( x e. A |-> C ) = ( a e. A |-> [_ a / x ]_ C ) |
28 |
27
|
a1i |
|- ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) -> ( x e. A |-> C ) = ( a e. A |-> [_ a / x ]_ C ) ) |
29 |
1 12 22 25 28
|
offval2 |
|- ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) -> ( ( x e. A |-> B ) oF R ( x e. A |-> C ) ) = ( a e. A |-> ( [_ a / x ]_ B R [_ a / x ]_ C ) ) ) |
30 |
|
nfcv |
|- F/_ a ( B R C ) |
31 |
|
nfcv |
|- F/_ x R |
32 |
7 31 17
|
nfov |
|- F/_ x ( [_ a / x ]_ B R [_ a / x ]_ C ) |
33 |
9 19
|
oveq12d |
|- ( x = a -> ( B R C ) = ( [_ a / x ]_ B R [_ a / x ]_ C ) ) |
34 |
30 32 33
|
cbvmpt |
|- ( x e. A |-> ( B R C ) ) = ( a e. A |-> ( [_ a / x ]_ B R [_ a / x ]_ C ) ) |
35 |
29 34
|
eqtr4di |
|- ( ( A e. V /\ ( x e. A |-> B ) Fn A /\ ( x e. A |-> C ) Fn A ) -> ( ( x e. A |-> B ) oF R ( x e. A |-> C ) ) = ( x e. A |-> ( B R C ) ) ) |