Metamath Proof Explorer


Theorem eldiophss

Description: Diophantine sets are sets of tuples of nonnegative integers. (Contributed by Stefan O'Rear, 10-Oct-2014) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Assertion eldiophss A Dioph B A 0 1 B

Proof

Step Hyp Ref Expression
1 eldioph3b A Dioph B B 0 a mzPoly A = b | c 0 b = c 1 B a c = 0
2 simpr B 0 a mzPoly A = b | c 0 b = c 1 B a c = 0 A = b | c 0 b = c 1 B a c = 0
3 vex d V
4 eqeq1 b = d b = c 1 B d = c 1 B
5 4 anbi1d b = d b = c 1 B a c = 0 d = c 1 B a c = 0
6 5 rexbidv b = d c 0 b = c 1 B a c = 0 c 0 d = c 1 B a c = 0
7 3 6 elab d b | c 0 b = c 1 B a c = 0 c 0 d = c 1 B a c = 0
8 simpr B 0 a mzPoly c 0 d = c 1 B d = c 1 B
9 elfznn a 1 B a
10 9 ssriv 1 B
11 elmapssres c 0 1 B c 1 B 0 1 B
12 10 11 mpan2 c 0 c 1 B 0 1 B
13 12 ad2antlr B 0 a mzPoly c 0 d = c 1 B c 1 B 0 1 B
14 8 13 eqeltrd B 0 a mzPoly c 0 d = c 1 B d 0 1 B
15 14 ex B 0 a mzPoly c 0 d = c 1 B d 0 1 B
16 15 adantrd B 0 a mzPoly c 0 d = c 1 B a c = 0 d 0 1 B
17 16 rexlimdva B 0 a mzPoly c 0 d = c 1 B a c = 0 d 0 1 B
18 7 17 syl5bi B 0 a mzPoly d b | c 0 b = c 1 B a c = 0 d 0 1 B
19 18 ssrdv B 0 a mzPoly b | c 0 b = c 1 B a c = 0 0 1 B
20 19 adantr B 0 a mzPoly A = b | c 0 b = c 1 B a c = 0 b | c 0 b = c 1 B a c = 0 0 1 B
21 2 20 eqsstrd B 0 a mzPoly A = b | c 0 b = c 1 B a c = 0 A 0 1 B
22 21 r19.29an B 0 a mzPoly A = b | c 0 b = c 1 B a c = 0 A 0 1 B
23 1 22 sylbi A Dioph B A 0 1 B