Step |
Hyp |
Ref |
Expression |
1 |
|
eldioph3b |
⊢ ( 𝐴 ∈ ( Dioph ‘ 𝐵 ) ↔ ( 𝐵 ∈ ℕ0 ∧ ∃ 𝑎 ∈ ( mzPoly ‘ ℕ ) 𝐴 = { 𝑏 ∣ ∃ 𝑐 ∈ ( ℕ0 ↑m ℕ ) ( 𝑏 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ∧ ( 𝑎 ‘ 𝑐 ) = 0 ) } ) ) |
2 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ ℕ0 ∧ 𝑎 ∈ ( mzPoly ‘ ℕ ) ) ∧ 𝐴 = { 𝑏 ∣ ∃ 𝑐 ∈ ( ℕ0 ↑m ℕ ) ( 𝑏 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ∧ ( 𝑎 ‘ 𝑐 ) = 0 ) } ) → 𝐴 = { 𝑏 ∣ ∃ 𝑐 ∈ ( ℕ0 ↑m ℕ ) ( 𝑏 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ∧ ( 𝑎 ‘ 𝑐 ) = 0 ) } ) |
3 |
|
vex |
⊢ 𝑑 ∈ V |
4 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑑 → ( 𝑏 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ↔ 𝑑 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ) ) |
5 |
4
|
anbi1d |
⊢ ( 𝑏 = 𝑑 → ( ( 𝑏 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ∧ ( 𝑎 ‘ 𝑐 ) = 0 ) ↔ ( 𝑑 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ∧ ( 𝑎 ‘ 𝑐 ) = 0 ) ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝑏 = 𝑑 → ( ∃ 𝑐 ∈ ( ℕ0 ↑m ℕ ) ( 𝑏 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ∧ ( 𝑎 ‘ 𝑐 ) = 0 ) ↔ ∃ 𝑐 ∈ ( ℕ0 ↑m ℕ ) ( 𝑑 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ∧ ( 𝑎 ‘ 𝑐 ) = 0 ) ) ) |
7 |
3 6
|
elab |
⊢ ( 𝑑 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( ℕ0 ↑m ℕ ) ( 𝑏 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ∧ ( 𝑎 ‘ 𝑐 ) = 0 ) } ↔ ∃ 𝑐 ∈ ( ℕ0 ↑m ℕ ) ( 𝑑 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ∧ ( 𝑎 ‘ 𝑐 ) = 0 ) ) |
8 |
|
simpr |
⊢ ( ( ( ( 𝐵 ∈ ℕ0 ∧ 𝑎 ∈ ( mzPoly ‘ ℕ ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m ℕ ) ) ∧ 𝑑 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ) → 𝑑 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ) |
9 |
|
elfznn |
⊢ ( 𝑎 ∈ ( 1 ... 𝐵 ) → 𝑎 ∈ ℕ ) |
10 |
9
|
ssriv |
⊢ ( 1 ... 𝐵 ) ⊆ ℕ |
11 |
|
elmapssres |
⊢ ( ( 𝑐 ∈ ( ℕ0 ↑m ℕ ) ∧ ( 1 ... 𝐵 ) ⊆ ℕ ) → ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ∈ ( ℕ0 ↑m ( 1 ... 𝐵 ) ) ) |
12 |
10 11
|
mpan2 |
⊢ ( 𝑐 ∈ ( ℕ0 ↑m ℕ ) → ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ∈ ( ℕ0 ↑m ( 1 ... 𝐵 ) ) ) |
13 |
12
|
ad2antlr |
⊢ ( ( ( ( 𝐵 ∈ ℕ0 ∧ 𝑎 ∈ ( mzPoly ‘ ℕ ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m ℕ ) ) ∧ 𝑑 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ) → ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ∈ ( ℕ0 ↑m ( 1 ... 𝐵 ) ) ) |
14 |
8 13
|
eqeltrd |
⊢ ( ( ( ( 𝐵 ∈ ℕ0 ∧ 𝑎 ∈ ( mzPoly ‘ ℕ ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m ℕ ) ) ∧ 𝑑 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ) → 𝑑 ∈ ( ℕ0 ↑m ( 1 ... 𝐵 ) ) ) |
15 |
14
|
ex |
⊢ ( ( ( 𝐵 ∈ ℕ0 ∧ 𝑎 ∈ ( mzPoly ‘ ℕ ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m ℕ ) ) → ( 𝑑 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) → 𝑑 ∈ ( ℕ0 ↑m ( 1 ... 𝐵 ) ) ) ) |
16 |
15
|
adantrd |
⊢ ( ( ( 𝐵 ∈ ℕ0 ∧ 𝑎 ∈ ( mzPoly ‘ ℕ ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m ℕ ) ) → ( ( 𝑑 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ∧ ( 𝑎 ‘ 𝑐 ) = 0 ) → 𝑑 ∈ ( ℕ0 ↑m ( 1 ... 𝐵 ) ) ) ) |
17 |
16
|
rexlimdva |
⊢ ( ( 𝐵 ∈ ℕ0 ∧ 𝑎 ∈ ( mzPoly ‘ ℕ ) ) → ( ∃ 𝑐 ∈ ( ℕ0 ↑m ℕ ) ( 𝑑 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ∧ ( 𝑎 ‘ 𝑐 ) = 0 ) → 𝑑 ∈ ( ℕ0 ↑m ( 1 ... 𝐵 ) ) ) ) |
18 |
7 17
|
syl5bi |
⊢ ( ( 𝐵 ∈ ℕ0 ∧ 𝑎 ∈ ( mzPoly ‘ ℕ ) ) → ( 𝑑 ∈ { 𝑏 ∣ ∃ 𝑐 ∈ ( ℕ0 ↑m ℕ ) ( 𝑏 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ∧ ( 𝑎 ‘ 𝑐 ) = 0 ) } → 𝑑 ∈ ( ℕ0 ↑m ( 1 ... 𝐵 ) ) ) ) |
19 |
18
|
ssrdv |
⊢ ( ( 𝐵 ∈ ℕ0 ∧ 𝑎 ∈ ( mzPoly ‘ ℕ ) ) → { 𝑏 ∣ ∃ 𝑐 ∈ ( ℕ0 ↑m ℕ ) ( 𝑏 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ∧ ( 𝑎 ‘ 𝑐 ) = 0 ) } ⊆ ( ℕ0 ↑m ( 1 ... 𝐵 ) ) ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝐵 ∈ ℕ0 ∧ 𝑎 ∈ ( mzPoly ‘ ℕ ) ) ∧ 𝐴 = { 𝑏 ∣ ∃ 𝑐 ∈ ( ℕ0 ↑m ℕ ) ( 𝑏 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ∧ ( 𝑎 ‘ 𝑐 ) = 0 ) } ) → { 𝑏 ∣ ∃ 𝑐 ∈ ( ℕ0 ↑m ℕ ) ( 𝑏 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ∧ ( 𝑎 ‘ 𝑐 ) = 0 ) } ⊆ ( ℕ0 ↑m ( 1 ... 𝐵 ) ) ) |
21 |
2 20
|
eqsstrd |
⊢ ( ( ( 𝐵 ∈ ℕ0 ∧ 𝑎 ∈ ( mzPoly ‘ ℕ ) ) ∧ 𝐴 = { 𝑏 ∣ ∃ 𝑐 ∈ ( ℕ0 ↑m ℕ ) ( 𝑏 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ∧ ( 𝑎 ‘ 𝑐 ) = 0 ) } ) → 𝐴 ⊆ ( ℕ0 ↑m ( 1 ... 𝐵 ) ) ) |
22 |
21
|
r19.29an |
⊢ ( ( 𝐵 ∈ ℕ0 ∧ ∃ 𝑎 ∈ ( mzPoly ‘ ℕ ) 𝐴 = { 𝑏 ∣ ∃ 𝑐 ∈ ( ℕ0 ↑m ℕ ) ( 𝑏 = ( 𝑐 ↾ ( 1 ... 𝐵 ) ) ∧ ( 𝑎 ‘ 𝑐 ) = 0 ) } ) → 𝐴 ⊆ ( ℕ0 ↑m ( 1 ... 𝐵 ) ) ) |
23 |
1 22
|
sylbi |
⊢ ( 𝐴 ∈ ( Dioph ‘ 𝐵 ) → 𝐴 ⊆ ( ℕ0 ↑m ( 1 ... 𝐵 ) ) ) |