Step |
Hyp |
Ref |
Expression |
1 |
|
eldioph3b |
|- ( A e. ( Dioph ` B ) <-> ( B e. NN0 /\ E. a e. ( mzPoly ` NN ) A = { b | E. c e. ( NN0 ^m NN ) ( b = ( c |` ( 1 ... B ) ) /\ ( a ` c ) = 0 ) } ) ) |
2 |
|
simpr |
|- ( ( ( B e. NN0 /\ a e. ( mzPoly ` NN ) ) /\ A = { b | E. c e. ( NN0 ^m NN ) ( b = ( c |` ( 1 ... B ) ) /\ ( a ` c ) = 0 ) } ) -> A = { b | E. c e. ( NN0 ^m NN ) ( b = ( c |` ( 1 ... B ) ) /\ ( a ` c ) = 0 ) } ) |
3 |
|
vex |
|- d e. _V |
4 |
|
eqeq1 |
|- ( b = d -> ( b = ( c |` ( 1 ... B ) ) <-> d = ( c |` ( 1 ... B ) ) ) ) |
5 |
4
|
anbi1d |
|- ( b = d -> ( ( b = ( c |` ( 1 ... B ) ) /\ ( a ` c ) = 0 ) <-> ( d = ( c |` ( 1 ... B ) ) /\ ( a ` c ) = 0 ) ) ) |
6 |
5
|
rexbidv |
|- ( b = d -> ( E. c e. ( NN0 ^m NN ) ( b = ( c |` ( 1 ... B ) ) /\ ( a ` c ) = 0 ) <-> E. c e. ( NN0 ^m NN ) ( d = ( c |` ( 1 ... B ) ) /\ ( a ` c ) = 0 ) ) ) |
7 |
3 6
|
elab |
|- ( d e. { b | E. c e. ( NN0 ^m NN ) ( b = ( c |` ( 1 ... B ) ) /\ ( a ` c ) = 0 ) } <-> E. c e. ( NN0 ^m NN ) ( d = ( c |` ( 1 ... B ) ) /\ ( a ` c ) = 0 ) ) |
8 |
|
simpr |
|- ( ( ( ( B e. NN0 /\ a e. ( mzPoly ` NN ) ) /\ c e. ( NN0 ^m NN ) ) /\ d = ( c |` ( 1 ... B ) ) ) -> d = ( c |` ( 1 ... B ) ) ) |
9 |
|
elfznn |
|- ( a e. ( 1 ... B ) -> a e. NN ) |
10 |
9
|
ssriv |
|- ( 1 ... B ) C_ NN |
11 |
|
elmapssres |
|- ( ( c e. ( NN0 ^m NN ) /\ ( 1 ... B ) C_ NN ) -> ( c |` ( 1 ... B ) ) e. ( NN0 ^m ( 1 ... B ) ) ) |
12 |
10 11
|
mpan2 |
|- ( c e. ( NN0 ^m NN ) -> ( c |` ( 1 ... B ) ) e. ( NN0 ^m ( 1 ... B ) ) ) |
13 |
12
|
ad2antlr |
|- ( ( ( ( B e. NN0 /\ a e. ( mzPoly ` NN ) ) /\ c e. ( NN0 ^m NN ) ) /\ d = ( c |` ( 1 ... B ) ) ) -> ( c |` ( 1 ... B ) ) e. ( NN0 ^m ( 1 ... B ) ) ) |
14 |
8 13
|
eqeltrd |
|- ( ( ( ( B e. NN0 /\ a e. ( mzPoly ` NN ) ) /\ c e. ( NN0 ^m NN ) ) /\ d = ( c |` ( 1 ... B ) ) ) -> d e. ( NN0 ^m ( 1 ... B ) ) ) |
15 |
14
|
ex |
|- ( ( ( B e. NN0 /\ a e. ( mzPoly ` NN ) ) /\ c e. ( NN0 ^m NN ) ) -> ( d = ( c |` ( 1 ... B ) ) -> d e. ( NN0 ^m ( 1 ... B ) ) ) ) |
16 |
15
|
adantrd |
|- ( ( ( B e. NN0 /\ a e. ( mzPoly ` NN ) ) /\ c e. ( NN0 ^m NN ) ) -> ( ( d = ( c |` ( 1 ... B ) ) /\ ( a ` c ) = 0 ) -> d e. ( NN0 ^m ( 1 ... B ) ) ) ) |
17 |
16
|
rexlimdva |
|- ( ( B e. NN0 /\ a e. ( mzPoly ` NN ) ) -> ( E. c e. ( NN0 ^m NN ) ( d = ( c |` ( 1 ... B ) ) /\ ( a ` c ) = 0 ) -> d e. ( NN0 ^m ( 1 ... B ) ) ) ) |
18 |
7 17
|
syl5bi |
|- ( ( B e. NN0 /\ a e. ( mzPoly ` NN ) ) -> ( d e. { b | E. c e. ( NN0 ^m NN ) ( b = ( c |` ( 1 ... B ) ) /\ ( a ` c ) = 0 ) } -> d e. ( NN0 ^m ( 1 ... B ) ) ) ) |
19 |
18
|
ssrdv |
|- ( ( B e. NN0 /\ a e. ( mzPoly ` NN ) ) -> { b | E. c e. ( NN0 ^m NN ) ( b = ( c |` ( 1 ... B ) ) /\ ( a ` c ) = 0 ) } C_ ( NN0 ^m ( 1 ... B ) ) ) |
20 |
19
|
adantr |
|- ( ( ( B e. NN0 /\ a e. ( mzPoly ` NN ) ) /\ A = { b | E. c e. ( NN0 ^m NN ) ( b = ( c |` ( 1 ... B ) ) /\ ( a ` c ) = 0 ) } ) -> { b | E. c e. ( NN0 ^m NN ) ( b = ( c |` ( 1 ... B ) ) /\ ( a ` c ) = 0 ) } C_ ( NN0 ^m ( 1 ... B ) ) ) |
21 |
2 20
|
eqsstrd |
|- ( ( ( B e. NN0 /\ a e. ( mzPoly ` NN ) ) /\ A = { b | E. c e. ( NN0 ^m NN ) ( b = ( c |` ( 1 ... B ) ) /\ ( a ` c ) = 0 ) } ) -> A C_ ( NN0 ^m ( 1 ... B ) ) ) |
22 |
21
|
r19.29an |
|- ( ( B e. NN0 /\ E. a e. ( mzPoly ` NN ) A = { b | E. c e. ( NN0 ^m NN ) ( b = ( c |` ( 1 ... B ) ) /\ ( a ` c ) = 0 ) } ) -> A C_ ( NN0 ^m ( 1 ... B ) ) ) |
23 |
1 22
|
sylbi |
|- ( A e. ( Dioph ` B ) -> A C_ ( NN0 ^m ( 1 ... B ) ) ) |