Metamath Proof Explorer


Theorem orrabdioph

Description: Diophantine set builder for disjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Assertion orrabdioph ( ( { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜑 } ∈ ( Dioph ‘ 𝑁 ) ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜓 } ∈ ( Dioph ‘ 𝑁 ) ) → { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ ( 𝜑𝜓 ) } ∈ ( Dioph ‘ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 unrab ( { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜑 } ∪ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜓 } ) = { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ ( 𝜑𝜓 ) }
2 diophun ( ( { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜑 } ∈ ( Dioph ‘ 𝑁 ) ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜓 } ∈ ( Dioph ‘ 𝑁 ) ) → ( { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜑 } ∪ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜓 } ) ∈ ( Dioph ‘ 𝑁 ) )
3 1 2 eqeltrrid ( ( { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜑 } ∈ ( Dioph ‘ 𝑁 ) ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝜓 } ∈ ( Dioph ‘ 𝑁 ) ) → { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ ( 𝜑𝜓 ) } ∈ ( Dioph ‘ 𝑁 ) )