| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) |
| 2 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( ! ‘ 𝑘 ) = ( ! ‘ 𝑖 ) ) |
| 3 |
2
|
negeqd |
⊢ ( 𝑘 = 𝑖 → - ( ! ‘ 𝑘 ) = - ( ! ‘ 𝑖 ) ) |
| 4 |
3
|
oveq2d |
⊢ ( 𝑘 = 𝑖 → ( 2 ↑ - ( ! ‘ 𝑘 ) ) = ( 2 ↑ - ( ! ‘ 𝑖 ) ) ) |
| 5 |
4
|
cbvsumv |
⊢ Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) = Σ 𝑖 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑖 ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( ! ‘ 𝑗 ) = ( ! ‘ 𝑖 ) ) |
| 7 |
6
|
negeqd |
⊢ ( 𝑗 = 𝑖 → - ( ! ‘ 𝑗 ) = - ( ! ‘ 𝑖 ) ) |
| 8 |
7
|
oveq2d |
⊢ ( 𝑗 = 𝑖 → ( 2 ↑ - ( ! ‘ 𝑗 ) ) = ( 2 ↑ - ( ! ‘ 𝑖 ) ) ) |
| 9 |
|
ovex |
⊢ ( 2 ↑ - ( ! ‘ 𝑖 ) ) ∈ V |
| 10 |
8 1 9
|
fvmpt |
⊢ ( 𝑖 ∈ ℕ → ( ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) ‘ 𝑖 ) = ( 2 ↑ - ( ! ‘ 𝑖 ) ) ) |
| 11 |
10
|
eqcomd |
⊢ ( 𝑖 ∈ ℕ → ( 2 ↑ - ( ! ‘ 𝑖 ) ) = ( ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) ‘ 𝑖 ) ) |
| 12 |
11
|
sumeq2i |
⊢ Σ 𝑖 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑖 ) ) = Σ 𝑖 ∈ ℕ ( ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) ‘ 𝑖 ) |
| 13 |
5 12
|
eqtri |
⊢ Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) = Σ 𝑖 ∈ ℕ ( ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) ‘ 𝑖 ) |
| 14 |
|
eqid |
⊢ ( 𝑙 ∈ ℕ ↦ Σ 𝑖 ∈ ( 1 ... 𝑙 ) ( ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) ‘ 𝑖 ) ) = ( 𝑙 ∈ ℕ ↦ Σ 𝑖 ∈ ( 1 ... 𝑙 ) ( ( 𝑗 ∈ ℕ ↦ ( 2 ↑ - ( ! ‘ 𝑗 ) ) ) ‘ 𝑖 ) ) |
| 15 |
1 13 14
|
aaliou3lem9 |
⊢ ¬ Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∈ 𝔸 |
| 16 |
15
|
nelir |
⊢ Σ 𝑘 ∈ ℕ ( 2 ↑ - ( ! ‘ 𝑘 ) ) ∉ 𝔸 |