Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( j e. NN |-> ( 2 ^ -u ( ! ` j ) ) ) = ( j e. NN |-> ( 2 ^ -u ( ! ` j ) ) ) |
2 |
|
fveq2 |
|- ( k = i -> ( ! ` k ) = ( ! ` i ) ) |
3 |
2
|
negeqd |
|- ( k = i -> -u ( ! ` k ) = -u ( ! ` i ) ) |
4 |
3
|
oveq2d |
|- ( k = i -> ( 2 ^ -u ( ! ` k ) ) = ( 2 ^ -u ( ! ` i ) ) ) |
5 |
4
|
cbvsumv |
|- sum_ k e. NN ( 2 ^ -u ( ! ` k ) ) = sum_ i e. NN ( 2 ^ -u ( ! ` i ) ) |
6 |
|
fveq2 |
|- ( j = i -> ( ! ` j ) = ( ! ` i ) ) |
7 |
6
|
negeqd |
|- ( j = i -> -u ( ! ` j ) = -u ( ! ` i ) ) |
8 |
7
|
oveq2d |
|- ( j = i -> ( 2 ^ -u ( ! ` j ) ) = ( 2 ^ -u ( ! ` i ) ) ) |
9 |
|
ovex |
|- ( 2 ^ -u ( ! ` i ) ) e. _V |
10 |
8 1 9
|
fvmpt |
|- ( i e. NN -> ( ( j e. NN |-> ( 2 ^ -u ( ! ` j ) ) ) ` i ) = ( 2 ^ -u ( ! ` i ) ) ) |
11 |
10
|
eqcomd |
|- ( i e. NN -> ( 2 ^ -u ( ! ` i ) ) = ( ( j e. NN |-> ( 2 ^ -u ( ! ` j ) ) ) ` i ) ) |
12 |
11
|
sumeq2i |
|- sum_ i e. NN ( 2 ^ -u ( ! ` i ) ) = sum_ i e. NN ( ( j e. NN |-> ( 2 ^ -u ( ! ` j ) ) ) ` i ) |
13 |
5 12
|
eqtri |
|- sum_ k e. NN ( 2 ^ -u ( ! ` k ) ) = sum_ i e. NN ( ( j e. NN |-> ( 2 ^ -u ( ! ` j ) ) ) ` i ) |
14 |
|
eqid |
|- ( l e. NN |-> sum_ i e. ( 1 ... l ) ( ( j e. NN |-> ( 2 ^ -u ( ! ` j ) ) ) ` i ) ) = ( l e. NN |-> sum_ i e. ( 1 ... l ) ( ( j e. NN |-> ( 2 ^ -u ( ! ` j ) ) ) ` i ) ) |
15 |
1 13 14
|
aaliou3lem9 |
|- -. sum_ k e. NN ( 2 ^ -u ( ! ` k ) ) e. AA |
16 |
15
|
nelir |
|- sum_ k e. NN ( 2 ^ -u ( ! ` k ) ) e/ AA |