Metamath Proof Explorer


Theorem abrexdom2

Description: An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion abrexdom2 ( 𝐴𝑉 → { 𝑥 ∣ ∃ 𝑦𝐴 𝑥 = 𝐵 } ≼ 𝐴 )

Proof

Step Hyp Ref Expression
1 moeq ∃* 𝑥 𝑥 = 𝐵
2 1 a1i ( 𝑦𝐴 → ∃* 𝑥 𝑥 = 𝐵 )
3 2 abrexdom ( 𝐴𝑉 → { 𝑥 ∣ ∃ 𝑦𝐴 𝑥 = 𝐵 } ≼ 𝐴 )