| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ac6gf.1 | ⊢ Ⅎ 𝑦 𝜓 | 
						
							| 2 |  | ac6gf.2 | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑥 )  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 3 |  | cbvrexsvw | ⊢ ( ∃ 𝑦  ∈  𝐵 𝜑  ↔  ∃ 𝑧  ∈  𝐵 [ 𝑧  /  𝑦 ] 𝜑 ) | 
						
							| 4 | 3 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ↔  ∀ 𝑥  ∈  𝐴 ∃ 𝑧  ∈  𝐵 [ 𝑧  /  𝑦 ] 𝜑 ) | 
						
							| 5 | 1 2 | sbhypf | ⊢ ( 𝑧  =  ( 𝑓 ‘ 𝑥 )  →  ( [ 𝑧  /  𝑦 ] 𝜑  ↔  𝜓 ) ) | 
						
							| 6 | 5 | ac6sg | ⊢ ( 𝐴  ∈  𝐶  →  ( ∀ 𝑥  ∈  𝐴 ∃ 𝑧  ∈  𝐵 [ 𝑧  /  𝑦 ] 𝜑  →  ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝜓 ) ) ) | 
						
							| 7 | 6 | imp | ⊢ ( ( 𝐴  ∈  𝐶  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑧  ∈  𝐵 [ 𝑧  /  𝑦 ] 𝜑 )  →  ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝜓 ) ) | 
						
							| 8 | 4 7 | sylan2b | ⊢ ( ( 𝐴  ∈  𝐶  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑 )  →  ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝜓 ) ) |