| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rabexg | ⊢ ( 𝐵  ∈  𝑀  →  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 }  ∈  V ) | 
						
							| 2 |  | ssrab2 | ⊢ { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 }  ⊆  𝐵 | 
						
							| 3 | 2 | a1i | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  →  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 }  ⊆  𝐵 ) | 
						
							| 4 |  | nfv | ⊢ Ⅎ 𝑦 𝑥  ∈  𝐴 | 
						
							| 5 |  | nfre1 | ⊢ Ⅎ 𝑦 ∃ 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } 𝜑 | 
						
							| 6 |  | sbceq2a | ⊢ ( 𝑤  =  𝑥  →  ( [ 𝑤  /  𝑥 ] 𝜑  ↔  𝜑 ) ) | 
						
							| 7 | 6 | rspcev | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] 𝜑 ) | 
						
							| 8 | 7 | ancoms | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] 𝜑 ) | 
						
							| 9 | 8 | anim1ci | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑦  ∈  𝐵  ∧  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] 𝜑 ) ) | 
						
							| 10 | 9 | anasss | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑦  ∈  𝐵  ∧  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] 𝜑 ) ) | 
						
							| 11 | 10 | ancoms | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  𝜑 )  →  ( 𝑦  ∈  𝐵  ∧  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] 𝜑 ) ) | 
						
							| 12 |  | sbceq2a | ⊢ ( 𝑧  =  𝑦  →  ( [ 𝑧  /  𝑦 ] 𝜑  ↔  𝜑 ) ) | 
						
							| 13 | 12 | sbcbidv | ⊢ ( 𝑧  =  𝑦  →  ( [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑  ↔  [ 𝑤  /  𝑥 ] 𝜑 ) ) | 
						
							| 14 | 13 | rexbidv | ⊢ ( 𝑧  =  𝑦  →  ( ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑  ↔  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] 𝜑 ) ) | 
						
							| 15 | 14 | elrab | ⊢ ( 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 }  ↔  ( 𝑦  ∈  𝐵  ∧  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] 𝜑 ) ) | 
						
							| 16 | 11 15 | sylibr | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  𝜑 )  →  𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } ) | 
						
							| 17 |  | sbceq2a | ⊢ ( 𝑣  =  𝑦  →  ( [ 𝑣  /  𝑦 ] 𝜑  ↔  𝜑 ) ) | 
						
							| 18 | 17 | rspcev | ⊢ ( ( 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 }  ∧  𝜑 )  →  ∃ 𝑣  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } [ 𝑣  /  𝑦 ] 𝜑 ) | 
						
							| 19 | 16 18 | sylancom | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  𝜑 )  →  ∃ 𝑣  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } [ 𝑣  /  𝑦 ] 𝜑 ) | 
						
							| 20 |  | nfcv | ⊢ Ⅎ 𝑣 { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } | 
						
							| 21 |  | nfcv | ⊢ Ⅎ 𝑦 𝐴 | 
						
							| 22 |  | nfcv | ⊢ Ⅎ 𝑦 𝑤 | 
						
							| 23 |  | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝑧  /  𝑦 ] 𝜑 | 
						
							| 24 | 22 23 | nfsbcw | ⊢ Ⅎ 𝑦 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 | 
						
							| 25 | 21 24 | nfrexw | ⊢ Ⅎ 𝑦 ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 | 
						
							| 26 |  | nfcv | ⊢ Ⅎ 𝑦 𝐵 | 
						
							| 27 | 25 26 | nfrabw | ⊢ Ⅎ 𝑦 { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } | 
						
							| 28 |  | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝑣  /  𝑦 ] 𝜑 | 
						
							| 29 |  | nfv | ⊢ Ⅎ 𝑣 𝜑 | 
						
							| 30 | 20 27 28 29 17 | cbvrexfw | ⊢ ( ∃ 𝑣  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } [ 𝑣  /  𝑦 ] 𝜑  ↔  ∃ 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } 𝜑 ) | 
						
							| 31 | 19 30 | sylib | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  𝜑 )  →  ∃ 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } 𝜑 ) | 
						
							| 32 | 31 | exp31 | ⊢ ( 𝑥  ∈  𝐴  →  ( 𝑦  ∈  𝐵  →  ( 𝜑  →  ∃ 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } 𝜑 ) ) ) | 
						
							| 33 | 4 5 32 | rexlimd | ⊢ ( 𝑥  ∈  𝐴  →  ( ∃ 𝑦  ∈  𝐵 𝜑  →  ∃ 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } 𝜑 ) ) | 
						
							| 34 | 33 | ralimia | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  →  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } 𝜑 ) | 
						
							| 35 |  | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑤  /  𝑥 ] 𝜑 | 
						
							| 36 |  | nfv | ⊢ Ⅎ 𝑤 𝜑 | 
						
							| 37 | 35 36 6 | cbvrexw | ⊢ ( ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] 𝜑  ↔  ∃ 𝑥  ∈  𝐴 𝜑 ) | 
						
							| 38 | 14 37 | bitrdi | ⊢ ( 𝑧  =  𝑦  →  ( ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑  ↔  ∃ 𝑥  ∈  𝐴 𝜑 ) ) | 
						
							| 39 | 38 | elrab | ⊢ ( 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 }  ↔  ( 𝑦  ∈  𝐵  ∧  ∃ 𝑥  ∈  𝐴 𝜑 ) ) | 
						
							| 40 | 39 | simprbi | ⊢ ( 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 }  →  ∃ 𝑥  ∈  𝐴 𝜑 ) | 
						
							| 41 | 40 | rgen | ⊢ ∀ 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } ∃ 𝑥  ∈  𝐴 𝜑 | 
						
							| 42 | 41 | a1i | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  →  ∀ 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } ∃ 𝑥  ∈  𝐴 𝜑 ) | 
						
							| 43 | 3 34 42 | 3jca | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  →  ( { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 }  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } 𝜑  ∧  ∀ 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } ∃ 𝑥  ∈  𝐴 𝜑 ) ) | 
						
							| 44 |  | sseq1 | ⊢ ( 𝑐  =  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 }  →  ( 𝑐  ⊆  𝐵  ↔  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 }  ⊆  𝐵 ) ) | 
						
							| 45 |  | nfcv | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 46 |  | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 | 
						
							| 47 | 45 46 | nfrexw | ⊢ Ⅎ 𝑥 ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 | 
						
							| 48 |  | nfcv | ⊢ Ⅎ 𝑥 𝐵 | 
						
							| 49 | 47 48 | nfrabw | ⊢ Ⅎ 𝑥 { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } | 
						
							| 50 | 49 | nfeq2 | ⊢ Ⅎ 𝑥 𝑐  =  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } | 
						
							| 51 |  | nfcv | ⊢ Ⅎ 𝑦 𝑐 | 
						
							| 52 | 51 27 | rexeqf | ⊢ ( 𝑐  =  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 }  →  ( ∃ 𝑦  ∈  𝑐 𝜑  ↔  ∃ 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } 𝜑 ) ) | 
						
							| 53 | 50 52 | ralbid | ⊢ ( 𝑐  =  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 }  →  ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝑐 𝜑  ↔  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } 𝜑 ) ) | 
						
							| 54 | 51 27 | raleqf | ⊢ ( 𝑐  =  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 }  →  ( ∀ 𝑦  ∈  𝑐 ∃ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } ∃ 𝑥  ∈  𝐴 𝜑 ) ) | 
						
							| 55 | 44 53 54 | 3anbi123d | ⊢ ( 𝑐  =  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 }  →  ( ( 𝑐  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝑐 𝜑  ∧  ∀ 𝑦  ∈  𝑐 ∃ 𝑥  ∈  𝐴 𝜑 )  ↔  ( { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 }  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } 𝜑  ∧  ∀ 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } ∃ 𝑥  ∈  𝐴 𝜑 ) ) ) | 
						
							| 56 | 55 | spcegv | ⊢ ( { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 }  ∈  V  →  ( ( { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 }  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } 𝜑  ∧  ∀ 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } ∃ 𝑥  ∈  𝐴 𝜑 )  →  ∃ 𝑐 ( 𝑐  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝑐 𝜑  ∧  ∀ 𝑦  ∈  𝑐 ∃ 𝑥  ∈  𝐴 𝜑 ) ) ) | 
						
							| 57 | 56 | imp | ⊢ ( ( { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 }  ∈  V  ∧  ( { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 }  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } 𝜑  ∧  ∀ 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ∃ 𝑤  ∈  𝐴 [ 𝑤  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 } ∃ 𝑥  ∈  𝐴 𝜑 ) )  →  ∃ 𝑐 ( 𝑐  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝑐 𝜑  ∧  ∀ 𝑦  ∈  𝑐 ∃ 𝑥  ∈  𝐴 𝜑 ) ) | 
						
							| 58 | 1 43 57 | syl2an | ⊢ ( ( 𝐵  ∈  𝑀  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑 )  →  ∃ 𝑐 ( 𝑐  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝑐 𝜑  ∧  ∀ 𝑦  ∈  𝑐 ∃ 𝑥  ∈  𝐴 𝜑 ) ) |