| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 2 |
|
efival |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) |
| 4 |
3
|
fveq2d |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( exp ‘ ( i · 𝐴 ) ) ) = ( abs ‘ ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) ) |
| 5 |
|
recoscl |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ∈ ℝ ) |
| 6 |
|
resincl |
⊢ ( 𝐴 ∈ ℝ → ( sin ‘ 𝐴 ) ∈ ℝ ) |
| 7 |
|
absreim |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ ( sin ‘ 𝐴 ) ∈ ℝ ) → ( abs ‘ ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) = ( √ ‘ ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 8 |
5 6 7
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) = ( √ ‘ ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 9 |
5
|
resqcld |
⊢ ( 𝐴 ∈ ℝ → ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
| 10 |
9
|
recnd |
⊢ ( 𝐴 ∈ ℝ → ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 11 |
6
|
resqcld |
⊢ ( 𝐴 ∈ ℝ → ( ( sin ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
| 12 |
11
|
recnd |
⊢ ( 𝐴 ∈ ℝ → ( ( sin ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 13 |
10 12
|
addcomd |
⊢ ( 𝐴 ∈ ℝ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
| 14 |
|
sincossq |
⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| 15 |
1 14
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| 16 |
13 15
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| 17 |
16
|
fveq2d |
⊢ ( 𝐴 ∈ ℝ → ( √ ‘ ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) = ( √ ‘ 1 ) ) |
| 18 |
|
sqrt1 |
⊢ ( √ ‘ 1 ) = 1 |
| 19 |
17 18
|
eqtrdi |
⊢ ( 𝐴 ∈ ℝ → ( √ ‘ ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) = 1 ) |
| 20 |
8 19
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) = 1 ) |
| 21 |
4 20
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( exp ‘ ( i · 𝐴 ) ) ) = 1 ) |