Description: Absolute value of a nonpositive difference. (Contributed by FL, 3-Jan-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | abssuble0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
2 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
3 | abssub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( abs ‘ ( 𝐵 − 𝐴 ) ) ) | |
4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |
5 | 4 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |
6 | abssubge0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( abs ‘ ( 𝐵 − 𝐴 ) ) = ( 𝐵 − 𝐴 ) ) | |
7 | 5 6 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |