Metamath Proof Explorer


Theorem abssuble0

Description: Absolute value of a nonpositive difference. (Contributed by FL, 3-Jan-2008)

Ref Expression
Assertion abssuble0 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → ( abs ‘ ( 𝐴𝐵 ) ) = ( 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
2 recn ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ )
3 abssub ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴𝐵 ) ) = ( abs ‘ ( 𝐵𝐴 ) ) )
4 1 2 3 syl2an ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( abs ‘ ( 𝐴𝐵 ) ) = ( abs ‘ ( 𝐵𝐴 ) ) )
5 4 3adant3 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → ( abs ‘ ( 𝐴𝐵 ) ) = ( abs ‘ ( 𝐵𝐴 ) ) )
6 abssubge0 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → ( abs ‘ ( 𝐵𝐴 ) ) = ( 𝐵𝐴 ) )
7 5 6 eqtrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → ( abs ‘ ( 𝐴𝐵 ) ) = ( 𝐵𝐴 ) )