Metamath Proof Explorer


Theorem abssubge0

Description: Absolute value of a nonnegative difference. (Contributed by NM, 14-Feb-2008)

Ref Expression
Assertion abssubge0 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → ( abs ‘ ( 𝐵𝐴 ) ) = ( 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 resubcl ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵𝐴 ) ∈ ℝ )
2 1 3adant3 ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐴𝐵 ) → ( 𝐵𝐴 ) ∈ ℝ )
3 subge0 ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ ( 𝐵𝐴 ) ↔ 𝐴𝐵 ) )
4 3 biimp3ar ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐴𝐵 ) → 0 ≤ ( 𝐵𝐴 ) )
5 absid ( ( ( 𝐵𝐴 ) ∈ ℝ ∧ 0 ≤ ( 𝐵𝐴 ) ) → ( abs ‘ ( 𝐵𝐴 ) ) = ( 𝐵𝐴 ) )
6 2 4 5 syl2anc ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐴𝐵 ) → ( abs ‘ ( 𝐵𝐴 ) ) = ( 𝐵𝐴 ) )
7 6 3com12 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → ( abs ‘ ( 𝐵𝐴 ) ) = ( 𝐵𝐴 ) )