Metamath Proof Explorer


Theorem abssubge0

Description: Absolute value of a nonnegative difference. (Contributed by NM, 14-Feb-2008)

Ref Expression
Assertion abssubge0 A B A B B A = B A

Proof

Step Hyp Ref Expression
1 resubcl B A B A
2 1 3adant3 B A A B B A
3 subge0 B A 0 B A A B
4 3 biimp3ar B A A B 0 B A
5 absid B A 0 B A B A = B A
6 2 4 5 syl2anc B A A B B A = B A
7 6 3com12 A B A B B A = B A