Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
2 |
|
recn |
|- ( B e. RR -> B e. CC ) |
3 |
|
abssub |
|- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A - B ) ) = ( abs ` ( B - A ) ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( abs ` ( A - B ) ) = ( abs ` ( B - A ) ) ) |
5 |
4
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( abs ` ( A - B ) ) = ( abs ` ( B - A ) ) ) |
6 |
|
abssubge0 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( abs ` ( B - A ) ) = ( B - A ) ) |
7 |
5 6
|
eqtrd |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( abs ` ( A - B ) ) = ( B - A ) ) |