| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 2 |
|
2cn |
|- 2 e. CC |
| 3 |
|
2ne0 |
|- 2 =/= 0 |
| 4 |
|
divcan3 |
|- ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. A ) / 2 ) = A ) |
| 5 |
2 3 4
|
mp3an23 |
|- ( A e. CC -> ( ( 2 x. A ) / 2 ) = A ) |
| 6 |
1 5
|
syl |
|- ( A e. RR -> ( ( 2 x. A ) / 2 ) = A ) |
| 7 |
6
|
ad2antlr |
|- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> ( ( 2 x. A ) / 2 ) = A ) |
| 8 |
|
ltle |
|- ( ( B e. RR /\ A e. RR ) -> ( B < A -> B <_ A ) ) |
| 9 |
8
|
imp |
|- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> B <_ A ) |
| 10 |
|
abssubge0 |
|- ( ( B e. RR /\ A e. RR /\ B <_ A ) -> ( abs ` ( A - B ) ) = ( A - B ) ) |
| 11 |
10
|
3expa |
|- ( ( ( B e. RR /\ A e. RR ) /\ B <_ A ) -> ( abs ` ( A - B ) ) = ( A - B ) ) |
| 12 |
9 11
|
syldan |
|- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> ( abs ` ( A - B ) ) = ( A - B ) ) |
| 13 |
12
|
oveq2d |
|- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> ( ( A + B ) + ( abs ` ( A - B ) ) ) = ( ( A + B ) + ( A - B ) ) ) |
| 14 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 15 |
|
simpr |
|- ( ( B e. CC /\ A e. CC ) -> A e. CC ) |
| 16 |
|
simpl |
|- ( ( B e. CC /\ A e. CC ) -> B e. CC ) |
| 17 |
15 16 15
|
ppncand |
|- ( ( B e. CC /\ A e. CC ) -> ( ( A + B ) + ( A - B ) ) = ( A + A ) ) |
| 18 |
|
2times |
|- ( A e. CC -> ( 2 x. A ) = ( A + A ) ) |
| 19 |
18
|
adantl |
|- ( ( B e. CC /\ A e. CC ) -> ( 2 x. A ) = ( A + A ) ) |
| 20 |
17 19
|
eqtr4d |
|- ( ( B e. CC /\ A e. CC ) -> ( ( A + B ) + ( A - B ) ) = ( 2 x. A ) ) |
| 21 |
14 1 20
|
syl2an |
|- ( ( B e. RR /\ A e. RR ) -> ( ( A + B ) + ( A - B ) ) = ( 2 x. A ) ) |
| 22 |
21
|
adantr |
|- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> ( ( A + B ) + ( A - B ) ) = ( 2 x. A ) ) |
| 23 |
13 22
|
eqtrd |
|- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> ( ( A + B ) + ( abs ` ( A - B ) ) ) = ( 2 x. A ) ) |
| 24 |
23
|
oveq1d |
|- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> ( ( ( A + B ) + ( abs ` ( A - B ) ) ) / 2 ) = ( ( 2 x. A ) / 2 ) ) |
| 25 |
|
ltnle |
|- ( ( B e. RR /\ A e. RR ) -> ( B < A <-> -. A <_ B ) ) |
| 26 |
25
|
biimpa |
|- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> -. A <_ B ) |
| 27 |
26
|
iffalsed |
|- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> if ( A <_ B , B , A ) = A ) |
| 28 |
7 24 27
|
3eqtr4rd |
|- ( ( ( B e. RR /\ A e. RR ) /\ B < A ) -> if ( A <_ B , B , A ) = ( ( ( A + B ) + ( abs ` ( A - B ) ) ) / 2 ) ) |
| 29 |
28
|
ancom1s |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> if ( A <_ B , B , A ) = ( ( ( A + B ) + ( abs ` ( A - B ) ) ) / 2 ) ) |
| 30 |
|
divcan3 |
|- ( ( B e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. B ) / 2 ) = B ) |
| 31 |
2 3 30
|
mp3an23 |
|- ( B e. CC -> ( ( 2 x. B ) / 2 ) = B ) |
| 32 |
14 31
|
syl |
|- ( B e. RR -> ( ( 2 x. B ) / 2 ) = B ) |
| 33 |
32
|
ad2antlr |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( ( 2 x. B ) / 2 ) = B ) |
| 34 |
|
abssuble0 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( abs ` ( A - B ) ) = ( B - A ) ) |
| 35 |
34
|
3expa |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( abs ` ( A - B ) ) = ( B - A ) ) |
| 36 |
35
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( ( A + B ) + ( abs ` ( A - B ) ) ) = ( ( A + B ) + ( B - A ) ) ) |
| 37 |
|
simpr |
|- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
| 38 |
|
simpl |
|- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
| 39 |
37 38 37
|
ppncand |
|- ( ( A e. CC /\ B e. CC ) -> ( ( B + A ) + ( B - A ) ) = ( B + B ) ) |
| 40 |
|
addcom |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) |
| 41 |
40
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) + ( B - A ) ) = ( ( B + A ) + ( B - A ) ) ) |
| 42 |
|
2times |
|- ( B e. CC -> ( 2 x. B ) = ( B + B ) ) |
| 43 |
42
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> ( 2 x. B ) = ( B + B ) ) |
| 44 |
39 41 43
|
3eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) + ( B - A ) ) = ( 2 x. B ) ) |
| 45 |
1 14 44
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) + ( B - A ) ) = ( 2 x. B ) ) |
| 46 |
45
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( ( A + B ) + ( B - A ) ) = ( 2 x. B ) ) |
| 47 |
36 46
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( ( A + B ) + ( abs ` ( A - B ) ) ) = ( 2 x. B ) ) |
| 48 |
47
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( ( ( A + B ) + ( abs ` ( A - B ) ) ) / 2 ) = ( ( 2 x. B ) / 2 ) ) |
| 49 |
|
iftrue |
|- ( A <_ B -> if ( A <_ B , B , A ) = B ) |
| 50 |
49
|
adantl |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> if ( A <_ B , B , A ) = B ) |
| 51 |
33 48 50
|
3eqtr4rd |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> if ( A <_ B , B , A ) = ( ( ( A + B ) + ( abs ` ( A - B ) ) ) / 2 ) ) |
| 52 |
|
simpr |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
| 53 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
| 54 |
29 51 52 53
|
ltlecasei |
|- ( ( A e. RR /\ B e. RR ) -> if ( A <_ B , B , A ) = ( ( ( A + B ) + ( abs ` ( A - B ) ) ) / 2 ) ) |