| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recn |
|
| 2 |
|
2cn |
|
| 3 |
|
2ne0 |
|
| 4 |
|
divcan3 |
|
| 5 |
2 3 4
|
mp3an23 |
|
| 6 |
1 5
|
syl |
|
| 7 |
6
|
ad2antlr |
|
| 8 |
|
ltle |
|
| 9 |
8
|
imp |
|
| 10 |
|
abssubge0 |
|
| 11 |
10
|
3expa |
|
| 12 |
9 11
|
syldan |
|
| 13 |
12
|
oveq2d |
|
| 14 |
|
recn |
|
| 15 |
|
simpr |
|
| 16 |
|
simpl |
|
| 17 |
15 16 15
|
ppncand |
|
| 18 |
|
2times |
|
| 19 |
18
|
adantl |
|
| 20 |
17 19
|
eqtr4d |
|
| 21 |
14 1 20
|
syl2an |
|
| 22 |
21
|
adantr |
|
| 23 |
13 22
|
eqtrd |
|
| 24 |
23
|
oveq1d |
|
| 25 |
|
ltnle |
|
| 26 |
25
|
biimpa |
|
| 27 |
26
|
iffalsed |
|
| 28 |
7 24 27
|
3eqtr4rd |
|
| 29 |
28
|
ancom1s |
|
| 30 |
|
divcan3 |
|
| 31 |
2 3 30
|
mp3an23 |
|
| 32 |
14 31
|
syl |
|
| 33 |
32
|
ad2antlr |
|
| 34 |
|
abssuble0 |
|
| 35 |
34
|
3expa |
|
| 36 |
35
|
oveq2d |
|
| 37 |
|
simpr |
|
| 38 |
|
simpl |
|
| 39 |
37 38 37
|
ppncand |
|
| 40 |
|
addcom |
|
| 41 |
40
|
oveq1d |
|
| 42 |
|
2times |
|
| 43 |
42
|
adantl |
|
| 44 |
39 41 43
|
3eqtr4d |
|
| 45 |
1 14 44
|
syl2an |
|
| 46 |
45
|
adantr |
|
| 47 |
36 46
|
eqtrd |
|
| 48 |
47
|
oveq1d |
|
| 49 |
|
iftrue |
|
| 50 |
49
|
adantl |
|
| 51 |
33 48 50
|
3eqtr4rd |
|
| 52 |
|
simpr |
|
| 53 |
|
simpl |
|
| 54 |
29 51 52 53
|
ltlecasei |
|