| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ackval2 | ⊢ ( Ack ‘ 2 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 2  ·  𝑛 )  +  3 ) ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑛  =  0  →  ( 2  ·  𝑛 )  =  ( 2  ·  0 ) ) | 
						
							| 3 | 2 | oveq1d | ⊢ ( 𝑛  =  0  →  ( ( 2  ·  𝑛 )  +  3 )  =  ( ( 2  ·  0 )  +  3 ) ) | 
						
							| 4 |  | 2t0e0 | ⊢ ( 2  ·  0 )  =  0 | 
						
							| 5 | 4 | oveq1i | ⊢ ( ( 2  ·  0 )  +  3 )  =  ( 0  +  3 ) | 
						
							| 6 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 7 | 6 | addlidi | ⊢ ( 0  +  3 )  =  3 | 
						
							| 8 | 5 7 | eqtri | ⊢ ( ( 2  ·  0 )  +  3 )  =  3 | 
						
							| 9 | 3 8 | eqtrdi | ⊢ ( 𝑛  =  0  →  ( ( 2  ·  𝑛 )  +  3 )  =  3 ) | 
						
							| 10 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 11 | 10 | a1i | ⊢ ( ( Ack ‘ 2 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 2  ·  𝑛 )  +  3 ) )  →  0  ∈  ℕ0 ) | 
						
							| 12 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 13 | 12 | a1i | ⊢ ( ( Ack ‘ 2 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 2  ·  𝑛 )  +  3 ) )  →  3  ∈  ℕ0 ) | 
						
							| 14 | 1 9 11 13 | fvmptd3 | ⊢ ( ( Ack ‘ 2 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 2  ·  𝑛 )  +  3 ) )  →  ( ( Ack ‘ 2 ) ‘ 0 )  =  3 ) | 
						
							| 15 |  | oveq2 | ⊢ ( 𝑛  =  1  →  ( 2  ·  𝑛 )  =  ( 2  ·  1 ) ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( 𝑛  =  1  →  ( ( 2  ·  𝑛 )  +  3 )  =  ( ( 2  ·  1 )  +  3 ) ) | 
						
							| 17 |  | 2t1e2 | ⊢ ( 2  ·  1 )  =  2 | 
						
							| 18 | 17 | oveq1i | ⊢ ( ( 2  ·  1 )  +  3 )  =  ( 2  +  3 ) | 
						
							| 19 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 20 |  | 3p2e5 | ⊢ ( 3  +  2 )  =  5 | 
						
							| 21 | 6 19 20 | addcomli | ⊢ ( 2  +  3 )  =  5 | 
						
							| 22 | 18 21 | eqtri | ⊢ ( ( 2  ·  1 )  +  3 )  =  5 | 
						
							| 23 | 16 22 | eqtrdi | ⊢ ( 𝑛  =  1  →  ( ( 2  ·  𝑛 )  +  3 )  =  5 ) | 
						
							| 24 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 25 | 24 | a1i | ⊢ ( ( Ack ‘ 2 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 2  ·  𝑛 )  +  3 ) )  →  1  ∈  ℕ0 ) | 
						
							| 26 |  | 5nn0 | ⊢ 5  ∈  ℕ0 | 
						
							| 27 | 26 | a1i | ⊢ ( ( Ack ‘ 2 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 2  ·  𝑛 )  +  3 ) )  →  5  ∈  ℕ0 ) | 
						
							| 28 | 1 23 25 27 | fvmptd3 | ⊢ ( ( Ack ‘ 2 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 2  ·  𝑛 )  +  3 ) )  →  ( ( Ack ‘ 2 ) ‘ 1 )  =  5 ) | 
						
							| 29 |  | oveq2 | ⊢ ( 𝑛  =  2  →  ( 2  ·  𝑛 )  =  ( 2  ·  2 ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( 𝑛  =  2  →  ( ( 2  ·  𝑛 )  +  3 )  =  ( ( 2  ·  2 )  +  3 ) ) | 
						
							| 31 |  | 2t2e4 | ⊢ ( 2  ·  2 )  =  4 | 
						
							| 32 | 31 | oveq1i | ⊢ ( ( 2  ·  2 )  +  3 )  =  ( 4  +  3 ) | 
						
							| 33 |  | 4p3e7 | ⊢ ( 4  +  3 )  =  7 | 
						
							| 34 | 32 33 | eqtri | ⊢ ( ( 2  ·  2 )  +  3 )  =  7 | 
						
							| 35 | 30 34 | eqtrdi | ⊢ ( 𝑛  =  2  →  ( ( 2  ·  𝑛 )  +  3 )  =  7 ) | 
						
							| 36 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 37 | 36 | a1i | ⊢ ( ( Ack ‘ 2 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 2  ·  𝑛 )  +  3 ) )  →  2  ∈  ℕ0 ) | 
						
							| 38 |  | 7nn0 | ⊢ 7  ∈  ℕ0 | 
						
							| 39 | 38 | a1i | ⊢ ( ( Ack ‘ 2 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 2  ·  𝑛 )  +  3 ) )  →  7  ∈  ℕ0 ) | 
						
							| 40 | 1 35 37 39 | fvmptd3 | ⊢ ( ( Ack ‘ 2 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 2  ·  𝑛 )  +  3 ) )  →  ( ( Ack ‘ 2 ) ‘ 2 )  =  7 ) | 
						
							| 41 | 14 28 40 | oteq123d | ⊢ ( ( Ack ‘ 2 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 2  ·  𝑛 )  +  3 ) )  →  〈 ( ( Ack ‘ 2 ) ‘ 0 ) ,  ( ( Ack ‘ 2 ) ‘ 1 ) ,  ( ( Ack ‘ 2 ) ‘ 2 ) 〉  =  〈 3 ,  5 ,  7 〉 ) | 
						
							| 42 | 1 41 | ax-mp | ⊢ 〈 ( ( Ack ‘ 2 ) ‘ 0 ) ,  ( ( Ack ‘ 2 ) ‘ 1 ) ,  ( ( Ack ‘ 2 ) ‘ 2 ) 〉  =  〈 3 ,  5 ,  7 〉 |