| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 2 | 1 | fveq2i | ⊢ ( Ack ‘ 2 )  =  ( Ack ‘ ( 1  +  1 ) ) | 
						
							| 3 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 4 |  | ackvalsuc1mpt | ⊢ ( 1  ∈  ℕ0  →  ( Ack ‘ ( 1  +  1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 1 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ( Ack ‘ ( 1  +  1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 1 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) | 
						
							| 6 |  | peano2nn0 | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑛  +  1 )  ∈  ℕ0 ) | 
						
							| 7 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 8 |  | ackval1 | ⊢ ( Ack ‘ 1 )  =  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  +  2 ) ) | 
						
							| 9 | 8 | itcovalpc | ⊢ ( ( ( 𝑛  +  1 )  ∈  ℕ0  ∧  2  ∈  ℕ0 )  →  ( ( IterComp ‘ ( Ack ‘ 1 ) ) ‘ ( 𝑛  +  1 ) )  =  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  +  ( 2  ·  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 10 | 6 7 9 | sylancl | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( IterComp ‘ ( Ack ‘ 1 ) ) ‘ ( 𝑛  +  1 ) )  =  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  +  ( 2  ·  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 11 | 10 | fveq1d | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( ( IterComp ‘ ( Ack ‘ 1 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 )  =  ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  +  ( 2  ·  ( 𝑛  +  1 ) ) ) ) ‘ 1 ) ) | 
						
							| 12 |  | eqidd | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  +  ( 2  ·  ( 𝑛  +  1 ) ) ) )  =  ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  +  ( 2  ·  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 13 |  | oveq1 | ⊢ ( 𝑖  =  1  →  ( 𝑖  +  ( 2  ·  ( 𝑛  +  1 ) ) )  =  ( 1  +  ( 2  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑖  =  1 )  →  ( 𝑖  +  ( 2  ·  ( 𝑛  +  1 ) ) )  =  ( 1  +  ( 2  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 15 | 3 | a1i | ⊢ ( 𝑛  ∈  ℕ0  →  1  ∈  ℕ0 ) | 
						
							| 16 |  | ovexd | ⊢ ( 𝑛  ∈  ℕ0  →  ( 1  +  ( 2  ·  ( 𝑛  +  1 ) ) )  ∈  V ) | 
						
							| 17 | 12 14 15 16 | fvmptd | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝑖  ∈  ℕ0  ↦  ( 𝑖  +  ( 2  ·  ( 𝑛  +  1 ) ) ) ) ‘ 1 )  =  ( 1  +  ( 2  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 18 |  | nn0cn | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℂ ) | 
						
							| 19 |  | 1cnd | ⊢ ( 𝑛  ∈  ℂ  →  1  ∈  ℂ ) | 
						
							| 20 |  | 2cnd | ⊢ ( 𝑛  ∈  ℂ  →  2  ∈  ℂ ) | 
						
							| 21 |  | peano2cn | ⊢ ( 𝑛  ∈  ℂ  →  ( 𝑛  +  1 )  ∈  ℂ ) | 
						
							| 22 | 20 21 | mulcld | ⊢ ( 𝑛  ∈  ℂ  →  ( 2  ·  ( 𝑛  +  1 ) )  ∈  ℂ ) | 
						
							| 23 | 19 22 | addcomd | ⊢ ( 𝑛  ∈  ℂ  →  ( 1  +  ( 2  ·  ( 𝑛  +  1 ) ) )  =  ( ( 2  ·  ( 𝑛  +  1 ) )  +  1 ) ) | 
						
							| 24 |  | id | ⊢ ( 𝑛  ∈  ℂ  →  𝑛  ∈  ℂ ) | 
						
							| 25 | 20 24 19 | adddid | ⊢ ( 𝑛  ∈  ℂ  →  ( 2  ·  ( 𝑛  +  1 ) )  =  ( ( 2  ·  𝑛 )  +  ( 2  ·  1 ) ) ) | 
						
							| 26 | 25 | oveq1d | ⊢ ( 𝑛  ∈  ℂ  →  ( ( 2  ·  ( 𝑛  +  1 ) )  +  1 )  =  ( ( ( 2  ·  𝑛 )  +  ( 2  ·  1 ) )  +  1 ) ) | 
						
							| 27 | 20 24 | mulcld | ⊢ ( 𝑛  ∈  ℂ  →  ( 2  ·  𝑛 )  ∈  ℂ ) | 
						
							| 28 | 20 19 | mulcld | ⊢ ( 𝑛  ∈  ℂ  →  ( 2  ·  1 )  ∈  ℂ ) | 
						
							| 29 | 27 28 19 | addassd | ⊢ ( 𝑛  ∈  ℂ  →  ( ( ( 2  ·  𝑛 )  +  ( 2  ·  1 ) )  +  1 )  =  ( ( 2  ·  𝑛 )  +  ( ( 2  ·  1 )  +  1 ) ) ) | 
						
							| 30 |  | 2t1e2 | ⊢ ( 2  ·  1 )  =  2 | 
						
							| 31 | 30 | oveq1i | ⊢ ( ( 2  ·  1 )  +  1 )  =  ( 2  +  1 ) | 
						
							| 32 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 33 | 31 32 | eqtri | ⊢ ( ( 2  ·  1 )  +  1 )  =  3 | 
						
							| 34 | 33 | a1i | ⊢ ( 𝑛  ∈  ℂ  →  ( ( 2  ·  1 )  +  1 )  =  3 ) | 
						
							| 35 | 34 | oveq2d | ⊢ ( 𝑛  ∈  ℂ  →  ( ( 2  ·  𝑛 )  +  ( ( 2  ·  1 )  +  1 ) )  =  ( ( 2  ·  𝑛 )  +  3 ) ) | 
						
							| 36 | 29 35 | eqtrd | ⊢ ( 𝑛  ∈  ℂ  →  ( ( ( 2  ·  𝑛 )  +  ( 2  ·  1 ) )  +  1 )  =  ( ( 2  ·  𝑛 )  +  3 ) ) | 
						
							| 37 | 23 26 36 | 3eqtrd | ⊢ ( 𝑛  ∈  ℂ  →  ( 1  +  ( 2  ·  ( 𝑛  +  1 ) ) )  =  ( ( 2  ·  𝑛 )  +  3 ) ) | 
						
							| 38 | 18 37 | syl | ⊢ ( 𝑛  ∈  ℕ0  →  ( 1  +  ( 2  ·  ( 𝑛  +  1 ) ) )  =  ( ( 2  ·  𝑛 )  +  3 ) ) | 
						
							| 39 | 11 17 38 | 3eqtrd | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( ( IterComp ‘ ( Ack ‘ 1 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 )  =  ( ( 2  ·  𝑛 )  +  3 ) ) | 
						
							| 40 | 39 | mpteq2ia | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 1 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 2  ·  𝑛 )  +  3 ) ) | 
						
							| 41 | 2 5 40 | 3eqtri | ⊢ ( Ack ‘ 2 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 2  ·  𝑛 )  +  3 ) ) |