| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-2 |  | 
						
							| 2 | 1 | fveq2i |  | 
						
							| 3 |  | 1nn0 |  | 
						
							| 4 |  | ackvalsuc1mpt |  | 
						
							| 5 | 3 4 | ax-mp |  | 
						
							| 6 |  | peano2nn0 |  | 
						
							| 7 |  | 2nn0 |  | 
						
							| 8 |  | ackval1 |  | 
						
							| 9 | 8 | itcovalpc |  | 
						
							| 10 | 6 7 9 | sylancl |  | 
						
							| 11 | 10 | fveq1d |  | 
						
							| 12 |  | eqidd |  | 
						
							| 13 |  | oveq1 |  | 
						
							| 14 | 13 | adantl |  | 
						
							| 15 | 3 | a1i |  | 
						
							| 16 |  | ovexd |  | 
						
							| 17 | 12 14 15 16 | fvmptd |  | 
						
							| 18 |  | nn0cn |  | 
						
							| 19 |  | 1cnd |  | 
						
							| 20 |  | 2cnd |  | 
						
							| 21 |  | peano2cn |  | 
						
							| 22 | 20 21 | mulcld |  | 
						
							| 23 | 19 22 | addcomd |  | 
						
							| 24 |  | id |  | 
						
							| 25 | 20 24 19 | adddid |  | 
						
							| 26 | 25 | oveq1d |  | 
						
							| 27 | 20 24 | mulcld |  | 
						
							| 28 | 20 19 | mulcld |  | 
						
							| 29 | 27 28 19 | addassd |  | 
						
							| 30 |  | 2t1e2 |  | 
						
							| 31 | 30 | oveq1i |  | 
						
							| 32 |  | 2p1e3 |  | 
						
							| 33 | 31 32 | eqtri |  | 
						
							| 34 | 33 | a1i |  | 
						
							| 35 | 34 | oveq2d |  | 
						
							| 36 | 29 35 | eqtrd |  | 
						
							| 37 | 23 26 36 | 3eqtrd |  | 
						
							| 38 | 18 37 | syl |  | 
						
							| 39 | 11 17 38 | 3eqtrd |  | 
						
							| 40 | 39 | mpteq2ia |  | 
						
							| 41 | 2 5 40 | 3eqtri |  |