| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1e0p1 |  | 
						
							| 2 | 1 | fveq2i |  | 
						
							| 3 |  | 0nn0 |  | 
						
							| 4 |  | ackvalsuc1mpt |  | 
						
							| 5 | 3 4 | ax-mp |  | 
						
							| 6 |  | peano2nn0 |  | 
						
							| 7 |  | 1nn0 |  | 
						
							| 8 |  | ackval0 |  | 
						
							| 9 | 8 | itcovalpc |  | 
						
							| 10 | 6 7 9 | sylancl |  | 
						
							| 11 |  | nn0cn |  | 
						
							| 12 | 6 11 | syl |  | 
						
							| 13 | 12 | mullidd |  | 
						
							| 14 | 13 | oveq2d |  | 
						
							| 15 | 14 | mpteq2dv |  | 
						
							| 16 | 10 15 | eqtrd |  | 
						
							| 17 | 16 | fveq1d |  | 
						
							| 18 |  | eqidd |  | 
						
							| 19 |  | oveq1 |  | 
						
							| 20 | 19 | adantl |  | 
						
							| 21 | 7 | a1i |  | 
						
							| 22 |  | ovexd |  | 
						
							| 23 | 18 20 21 22 | fvmptd |  | 
						
							| 24 |  | 1cnd |  | 
						
							| 25 |  | nn0cn |  | 
						
							| 26 |  | peano2cn |  | 
						
							| 27 | 25 26 | syl |  | 
						
							| 28 | 24 27 | addcomd |  | 
						
							| 29 | 25 24 24 | addassd |  | 
						
							| 30 |  | 1p1e2 |  | 
						
							| 31 | 30 | oveq2i |  | 
						
							| 32 | 31 | a1i |  | 
						
							| 33 | 28 29 32 | 3eqtrd |  | 
						
							| 34 | 17 23 33 | 3eqtrd |  | 
						
							| 35 | 34 | mpteq2ia |  | 
						
							| 36 | 2 5 35 | 3eqtri |  |