| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1e0p1 |  |-  1 = ( 0 + 1 ) | 
						
							| 2 | 1 | fveq2i |  |-  ( Ack ` 1 ) = ( Ack ` ( 0 + 1 ) ) | 
						
							| 3 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 4 |  | ackvalsuc1mpt |  |-  ( 0 e. NN0 -> ( Ack ` ( 0 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) ) ) | 
						
							| 5 | 3 4 | ax-mp |  |-  ( Ack ` ( 0 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) ) | 
						
							| 6 |  | peano2nn0 |  |-  ( n e. NN0 -> ( n + 1 ) e. NN0 ) | 
						
							| 7 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 8 |  | ackval0 |  |-  ( Ack ` 0 ) = ( i e. NN0 |-> ( i + 1 ) ) | 
						
							| 9 | 8 | itcovalpc |  |-  ( ( ( n + 1 ) e. NN0 /\ 1 e. NN0 ) -> ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( 1 x. ( n + 1 ) ) ) ) ) | 
						
							| 10 | 6 7 9 | sylancl |  |-  ( n e. NN0 -> ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( 1 x. ( n + 1 ) ) ) ) ) | 
						
							| 11 |  | nn0cn |  |-  ( ( n + 1 ) e. NN0 -> ( n + 1 ) e. CC ) | 
						
							| 12 | 6 11 | syl |  |-  ( n e. NN0 -> ( n + 1 ) e. CC ) | 
						
							| 13 | 12 | mullidd |  |-  ( n e. NN0 -> ( 1 x. ( n + 1 ) ) = ( n + 1 ) ) | 
						
							| 14 | 13 | oveq2d |  |-  ( n e. NN0 -> ( i + ( 1 x. ( n + 1 ) ) ) = ( i + ( n + 1 ) ) ) | 
						
							| 15 | 14 | mpteq2dv |  |-  ( n e. NN0 -> ( i e. NN0 |-> ( i + ( 1 x. ( n + 1 ) ) ) ) = ( i e. NN0 |-> ( i + ( n + 1 ) ) ) ) | 
						
							| 16 | 10 15 | eqtrd |  |-  ( n e. NN0 -> ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( n + 1 ) ) ) ) | 
						
							| 17 | 16 | fveq1d |  |-  ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( i e. NN0 |-> ( i + ( n + 1 ) ) ) ` 1 ) ) | 
						
							| 18 |  | eqidd |  |-  ( n e. NN0 -> ( i e. NN0 |-> ( i + ( n + 1 ) ) ) = ( i e. NN0 |-> ( i + ( n + 1 ) ) ) ) | 
						
							| 19 |  | oveq1 |  |-  ( i = 1 -> ( i + ( n + 1 ) ) = ( 1 + ( n + 1 ) ) ) | 
						
							| 20 | 19 | adantl |  |-  ( ( n e. NN0 /\ i = 1 ) -> ( i + ( n + 1 ) ) = ( 1 + ( n + 1 ) ) ) | 
						
							| 21 | 7 | a1i |  |-  ( n e. NN0 -> 1 e. NN0 ) | 
						
							| 22 |  | ovexd |  |-  ( n e. NN0 -> ( 1 + ( n + 1 ) ) e. _V ) | 
						
							| 23 | 18 20 21 22 | fvmptd |  |-  ( n e. NN0 -> ( ( i e. NN0 |-> ( i + ( n + 1 ) ) ) ` 1 ) = ( 1 + ( n + 1 ) ) ) | 
						
							| 24 |  | 1cnd |  |-  ( n e. NN0 -> 1 e. CC ) | 
						
							| 25 |  | nn0cn |  |-  ( n e. NN0 -> n e. CC ) | 
						
							| 26 |  | peano2cn |  |-  ( n e. CC -> ( n + 1 ) e. CC ) | 
						
							| 27 | 25 26 | syl |  |-  ( n e. NN0 -> ( n + 1 ) e. CC ) | 
						
							| 28 | 24 27 | addcomd |  |-  ( n e. NN0 -> ( 1 + ( n + 1 ) ) = ( ( n + 1 ) + 1 ) ) | 
						
							| 29 | 25 24 24 | addassd |  |-  ( n e. NN0 -> ( ( n + 1 ) + 1 ) = ( n + ( 1 + 1 ) ) ) | 
						
							| 30 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 31 | 30 | oveq2i |  |-  ( n + ( 1 + 1 ) ) = ( n + 2 ) | 
						
							| 32 | 31 | a1i |  |-  ( n e. NN0 -> ( n + ( 1 + 1 ) ) = ( n + 2 ) ) | 
						
							| 33 | 28 29 32 | 3eqtrd |  |-  ( n e. NN0 -> ( 1 + ( n + 1 ) ) = ( n + 2 ) ) | 
						
							| 34 | 17 23 33 | 3eqtrd |  |-  ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) = ( n + 2 ) ) | 
						
							| 35 | 34 | mpteq2ia |  |-  ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( n + 2 ) ) | 
						
							| 36 | 2 5 35 | 3eqtri |  |-  ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) |